Difference between revisions of "2020 AMC 10A Problems/Problem 6"
(deleted first solution, as second solution used same method but elaborated more) |
|||
Line 1: | Line 1: | ||
+ | ==Problem== | ||
+ | |||
How many <math>4</math>-digit positive integers (that is, integers between <math>1000</math> and <math>9999</math>, inclusive) having only even digits are divisible by <math>5?</math> | How many <math>4</math>-digit positive integers (that is, integers between <math>1000</math> and <math>9999</math>, inclusive) having only even digits are divisible by <math>5?</math> | ||
Line 14: | Line 16: | ||
{{AMC10 box|year=2020|ab=A|num-b=5|num-a=7}} | {{AMC10 box|year=2020|ab=A|num-b=5|num-a=7}} | ||
+ | {{AMC12 box|year=2020|ab=A|num-b=3|num-a=5}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 07:02, 1 February 2020
Contents
Problem
How many -digit positive integers (that is, integers between and , inclusive) having only even digits are divisible by
Solution
The ones digit, for all numbers divisible by 5, must be either or . However, from the restriction in the problem, it must be even, giving us exactly one choice () for this digit. For the middle two digits, we may choose any even integer from , meaning that we have total options. For the first digit, we follow similar intuition but realize that it cannot be , hence giving us 4 possibilities. Therefore, using the multiplication rule, we get . ~ciceronii
Video Solution
~IceMatrix
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 3 |
Followed by Problem 5 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.