Difference between revisions of "2019 AMC 10B Problems/Problem 4"
m (changed headers) |
(→Solution 2) |
||
Line 19: | Line 19: | ||
===Solution 2=== | ===Solution 2=== | ||
We know that <math>a</math>, <math>b</math>, and <math>c</math> form an arithmetic progression, so if the common difference is <math>d</math>, we can say <math>a,b,c = a, a+d, a+2d.</math> Now we have <math>ax+ (a+d)y = a+2d</math>, and expanding gives <math>ax + ay + dy = a + 2d.</math> Factoring gives <math>a(x+y-1)+d(y-2) = 0</math>. Since this must always be true (regardless of the values of <math>x</math> and <math>y</math>), we must have <math>x+y-1 = 0</math> and <math>y-2 = 0</math>, so <math>x,y = -1, 2,</math> and the common point is <math>\boxed{\textbf{(A) } (-1,2)}</math>. | We know that <math>a</math>, <math>b</math>, and <math>c</math> form an arithmetic progression, so if the common difference is <math>d</math>, we can say <math>a,b,c = a, a+d, a+2d.</math> Now we have <math>ax+ (a+d)y = a+2d</math>, and expanding gives <math>ax + ay + dy = a + 2d.</math> Factoring gives <math>a(x+y-1)+d(y-2) = 0</math>. Since this must always be true (regardless of the values of <math>x</math> and <math>y</math>), we must have <math>x+y-1 = 0</math> and <math>y-2 = 0</math>, so <math>x,y = -1, 2,</math> and the common point is <math>\boxed{\textbf{(A) } (-1,2)}</math>. | ||
+ | |||
+ | |||
+ | ===Solution 3=== | ||
+ | Use quick process of elimination. <math>\textbf{B}</math> doesn't necessarily work because <math>b!=c</math>. <math>\textbf{C, D, E}</math> also doesn't necessarily work because the x-value is <math>1</math>, but the y-value is an integer. So by process of elimination, <math>\boxed{\textbf{(A) } (-1, 2)}</math> is our answer. | ||
==See Also== | ==See Also== |
Revision as of 12:50, 2 February 2020
Problem
All lines with equation such that form an arithmetic progression pass through a common point. What are the coordinates of that point?
Solution
Solution 1
If all lines satisfy the condition, then we can just plug in values for , , and that form an arithmetic progression. Let's use , , , and , , . Then the two lines we get are: Use elimination to deduce and plug this into one of the previous line equations. We get Thus the common point is .
~IronicNinja
Solution 2
We know that , , and form an arithmetic progression, so if the common difference is , we can say Now we have , and expanding gives Factoring gives . Since this must always be true (regardless of the values of and ), we must have and , so and the common point is .
Solution 3
Use quick process of elimination. doesn't necessarily work because . also doesn't necessarily work because the x-value is , but the y-value is an integer. So by process of elimination, is our answer.
See Also
2019 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 3 |
Followed by Problem 5 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.