ONLINE AMC 8 PREP WITH AOPS
Top scorers around the country use AoPS. Join training courses for beginners and advanced students.
VIEW CATALOG

Difference between revisions of "2019 AMC 8 Problems"

(Problem 7)
(Problem 8)
Line 182: Line 182:
  
 
== Problem 8 ==
 
== Problem 8 ==
Gilda has a bag of marbles. She gives <math>20\%</math> of them to her friend Pedro. Then Gilda gives <math>10\%</math> of what is left to another friend, Ebony. Finally, Gilda gives <math>25\%</math> of what is now left in the bag to her brother Jimmy. What percentage of her original bag of marbles does Gilda have left for herself?
+
here is how i did this one:
 
+
it is probably not a very good strategy but it worked and i suppose that is what matters.
 +
i set x as 100, the total number of marbles that gilda had at the beginning. then, i subtracted 0.2(100) to get 80. from there, i subtracted 0.1(80) to get 72. then, i subtracted 0.25(72) to get 54. and 54 is 54% of 100 so the answer is E or 54%.
 
<math>\textbf{(A) }20\qquad\textbf{(B) }33\frac{1}{3}\qquad\textbf{(C) }38\qquad\textbf{(D) }45\qquad\textbf{(E) }54</math>
 
<math>\textbf{(A) }20\qquad\textbf{(B) }33\frac{1}{3}\qquad\textbf{(C) }38\qquad\textbf{(D) }45\qquad\textbf{(E) }54</math>
  

Revision as of 12:17, 18 April 2020

Problem 1

hi guys!!!! tis bo. i am doing math. $\textbf{(A) }6\qquad\textbf{(B) }7\qquad\textbf{(C) }8\qquad\textbf{(D) }9\qquad\textbf{(E) }10$

Solution

Problem 2

Three identical rectangles are like three little triplets. they are so cute. [asy] draw((0,0)--(3,0)); draw((0,0)--(0,2)); draw((0,2)--(3,2)); draw((3,2)--(3,0)); dot((0,0)); dot((0,2)); dot((3,0)); dot((3,2)); draw((2,0)--(2,2)); draw((0,1)--(2,1)); label("A",(0,0),S); label("B",(3,0),S); label("C",(3,2),N); label("D",(0,2),N); [/asy]

$\textbf{(A) }45\qquad\textbf{(B) }75\qquad\textbf{(C) }100\qquad\textbf{(D) }125\qquad\textbf{(E) }150$

Solution

Problem 3

man, i just love fractions

$\textbf{(A) }\frac{15}{11} < \frac{17}{13} < \frac{19}{15}\qquad\textbf{(B) }\frac{15}{11} < \frac{19}{15} < \frac{17}{13}\qquad\textbf{(C) }\frac{17}{13} < \frac{19}{15} < \frac{15}{11}\qquad\textbf{(D) }\frac{19}{15} < \frac{15}{11} < \frac{17}{13}\qquad\textbf{(E) }\frac{19}{15} < \frac{17}{13} < \frac{15}{11}$

Solution

Problem 4

this little quadrilateral isn't very pretty.

[asy] draw((-13,0)--(0,5)); draw((0,5)--(13,0)); draw((13,0)--(0,-5)); draw((0,-5)--(-13,0)); dot((-13,0)); dot((0,5)); dot((13,0)); dot((0,-5)); label("A",(-13,0),W); label("B",(0,5),N); label("C",(13,0),E); label("D",(0,-5),S); [/asy]

$\textbf{(A) }60\qquad\textbf{(B) }90\qquad\textbf{(C) }105\qquad\textbf{(D) }120\qquad\textbf{(E) }144$

Solution

Problem 5

the answer is b 2019 AMC 8 -4 Image 1.png

2019 AMC 8 -4 Image 2.png

Solution

Problem 6

i struggle with this question a lot. it is very difficult for little children like myself. [asy] draw((0,0)--(0,8)); draw((0,8)--(8,8)); draw((8,8)--(8,0)); draw((8,0)--(0,0)); dot((0,0)); dot((0,1)); dot((0,2)); dot((0,3)); dot((0,4)); dot((0,5)); dot((0,6)); dot((0,7)); dot((0,8));  dot((1,0)); dot((1,1)); dot((1,2)); dot((1,3)); dot((1,4)); dot((1,5)); dot((1,6)); dot((1,7)); dot((1,8));  dot((2,0)); dot((2,1)); dot((2,2)); dot((2,3)); dot((2,4)); dot((2,5)); dot((2,6)); dot((2,7)); dot((2,8));  dot((3,0)); dot((3,1)); dot((3,2)); dot((3,3)); dot((3,4)); dot((3,5)); dot((3,6)); dot((3,7)); dot((3,8));  dot((4,0)); dot((4,1)); dot((4,2)); dot((4,3)); dot((4,4)); dot((4,5)); dot((4,6)); dot((4,7)); dot((4,8));  dot((5,0)); dot((5,1)); dot((5,2)); dot((5,3)); dot((5,4)); dot((5,5)); dot((5,6)); dot((5,7)); dot((5,8));  dot((6,0)); dot((6,1)); dot((6,2)); dot((6,3)); dot((6,4)); dot((6,5)); dot((6,6)); dot((6,7)); dot((6,8));  dot((7,0)); dot((7,1)); dot((7,2)); dot((7,3)); dot((7,4)); dot((7,5)); dot((7,6)); dot((7,7)); dot((7,8));  dot((8,0)); dot((8,1)); dot((8,2)); dot((8,3)); dot((8,4)); dot((8,5)); dot((8,6)); dot((8,7)); dot((8,8)); label("P",(4,4),NE); [/asy]

$\textbf{(A) }\frac{1}{5}\qquad\textbf{(B) }\frac{1}{4} \qquad\textbf{(C) }\frac{2}{5} \qquad\textbf{(D) }\frac{9}{20} \qquad\textbf{(E) }\frac{1}{2}$

Solution

Problem 7

i got this one right. here is how i did it: (76+94+87+x+y)/5=81 257+x+y=405 x+y=148 and the highest score possible on one test is 100 so the lowest score she can get is 48. therefore the answer is 48 $\textbf{(A) }48\qquad\textbf{(B) }52\qquad\textbf{(C) }66\qquad\textbf{(D) }70\qquad\textbf{(E) }74$

Solution

Problem 8

here is how i did this one: it is probably not a very good strategy but it worked and i suppose that is what matters. i set x as 100, the total number of marbles that gilda had at the beginning. then, i subtracted 0.2(100) to get 80. from there, i subtracted 0.1(80) to get 72. then, i subtracted 0.25(72) to get 54. and 54 is 54% of 100 so the answer is E or 54%. $\textbf{(A) }20\qquad\textbf{(B) }33\frac{1}{3}\qquad\textbf{(C) }38\qquad\textbf{(D) }45\qquad\textbf{(E) }54$

Solution

Problem 9

Alex and Felicia each have cats as pets. Alex buys cat food in cylindrical cans that are $6$ cm in diameter and $12$ cm high. Felicia buys cat food in cylindrical cans that are $12$ cm in diameter and $6$ cm high. What is the ratio of the volume one of Alex's cans to the volume one of Felicia's cans?

$\textbf{(A) }1:4\qquad\textbf{(B) }1:2\qquad\textbf{(C) }1:1\qquad\textbf{(D) }2:1\qquad\textbf{(E) }4:1$

Solution

Problem 10

The diagram shows the number of students at soccer practice each weekday during last week. After computing the mean and median values, Coach discovers that there were actually $21$ participants on Wednesday. Which of the following statements describes the change in the mean and median after the correction is made? [asy] unitsize(2mm); defaultpen(fontsize(8bp)); real d = 5; real t = 0.7; real r; int[] num = {20,26,16,22,16}; string[] days = {"Monday","Tuesday","Wednesday","Thursday","Friday"}; for (int i=0; i<30; i=i+2) { draw((i,0)--(i,-5*d),gray); }for (int i=0; i<5; ++i) {   r = -1*(i+0.5)*d; fill((0,r-t)--(0,r+t)--(num[i],r+t)--(num[i],r-t)--cycle,gray); label(days[i],(-1,r),W); }for(int i=0; i<32; i=i+4) { label(string(i),(i,1)); }label("Number of students at soccer practice",(14,3.5)); [/asy]

$\textbf{(A) }$ The mean increases by $1$ and the median does not change.

$\textbf{(B) }$ The mean increases by $1$ and the median increases by $1$.

$\textbf{(C) }$ The mean increases by $1$ and the median increases by $5$.

$\textbf{(D) }$ The mean increases by $5$ and the median increases by $1$.

$\textbf{(E) }$ The mean increases by $5$ and the median increases by $5$.

Solution

Problem 11

The eighth grade class at Lincoln Middle School has $93$ students. Each student takes a math class or a foreign language class or both. There are $70$ eighth graders taking a math class, and there are $54$ eight graders taking a foreign language class. How many eight graders take only a math class and not a foreign language class?

$\textbf{(A) }16\qquad\textbf{(B) }23\qquad\textbf{(C) }31\qquad\textbf{(D) }39\qquad\textbf{(E) }70$

Solution

Problem 12

The faces of a cube are painted in six different colors: red $(R)$, white $(W)$, green $(G)$, brown $(B)$, aqua $(A)$, and purple $(P)$. Three views of the cube are shown below. What is the color of the face opposite the aqua face?

2019AMC8Prob12.png

$\textbf{(A) }\text{red}\qquad\textbf{(B) }\text{white}\qquad\textbf{(C) }\text{green}\qquad\textbf{(D) }\text{brown}\qquad\textbf{(E) }\text{purple}$

Solution

Problem 13

A palindrome is a number that has the same value when read from left to right or from right to left. (For example, 12321 is a palindrome.) Let $N$ be the least three-digit integer which is not a palindrome but which is the sum of three distinct two-digit palindromes. What is the sum of the digits of $N$?

$\textbf{(A) }2\qquad\textbf{(B) }3\qquad\textbf{(C) }4\qquad\textbf{(D) }5\qquad\textbf{(E) }6$

Solution

Problem 14

Isabella has $6$ coupons that can be redeemed for free ice cream cones at Pete's Sweet Treats. In order to make the coupons last, she decides that she will redeem one every $10$ days until she has used them all. She knows that Pete's is closed on Sundays, but as she circles the $6$ dates on her calendar, she realizes that no circled date falls on a Sunday. On what day of the week does Isabella redeem her first coupon?

$\textbf{(A) }\text{Monday}\qquad\textbf{(B) }\text{Tuesday}\qquad\textbf{(C) }\text{Wednesday}\qquad\textbf{(D) }\text{Thursday}\qquad\textbf{(E) }\text{Friday}$

Solution

Problem 15

On a beach $50$ people are wearing sunglasses and $35$ people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is is also wearing sunglasses is $\frac{2}{5}$. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?

$\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}$

Solution

Problem 16

Qiang drives $15$ miles at an average speed of $30$ miles per hour. How many additional miles will he have to drive at $55$ miles per hour to average $50$ miles per hour for the entire trip?

$\textbf{(A) }45\qquad\textbf{(B) }62\qquad\textbf{(C) }90\qquad\textbf{(D) }110\qquad\textbf{(E) }135$

Solution

Problem 17

What is the value of the product \[\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?\]

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50$

Solution

Problem 18

The faces of each of two fair dice are numbered $1$, $2$, $3$, $5$, $7$, and $8$. When the two dice are tossed, what is the probability that their sum will be an even number?

$\textbf{(A) }\frac{4}{9}\qquad\textbf{(B) }\frac{1}{2}\qquad\textbf{(C) }\frac{5}{9}\qquad\textbf{(D) }\frac{3}{5}\qquad\textbf{(E) }\frac{2}{3}$

Solution

Problem 19

In a tournament there are six teams that play each other twice. A team earns $3$ points for a win, $1$ point for a draw, and $0$ points for a loss. After all the games have been played it turns out that the top three teams earned the same number of total points. What is the greatest possible number of total points for each of the top three teams?

$\textbf{(A) }22\qquad\textbf{(B) }23\qquad\textbf{(C) }24\qquad\textbf{(D) }26\qquad\textbf{(E) }30$

Solution

Problem 20

How many different real numbers $x$ satisfy the equation \[(x^{2}-5)^{2}=16?\]

$\textbf{(A) }0\qquad\textbf{(B) }1\qquad\textbf{(C) }2\qquad\textbf{(D) }4\qquad\textbf{(E) }8$

Solution

Problem 21

What is the area of the triangle formed by the lines $y=5$, $y=1+x$, and $y=1-x$?

$\textbf{(A) }4\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }12\qquad\textbf{(E) }16$

Solution

Problem 22

A store increased the original price of a shirt by a certain percent and then decreased the new price by the same amount. Given that the resulting price was $84\%$ of the original price, by what percent was the price increased and decreased?

$\textbf{(A) }16\qquad\textbf{(B) }20\qquad\textbf{(C) }28\qquad\textbf{(D) }36\qquad\textbf{(E) }40$

Solution

Problem 23

After Euclid High School's last basketball game, it was determined that $\frac{1}{4}$ of the team's points were scored by Alexa and $\frac{2}{7}$ were scored by Brittany. Chelsea scored $15$ points. None of the other $7$ team members scored more than $2$ points. What was the total number of points scored by the other $7$ team members?

$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14$

Solution

Problem 24

In triangle $ABC$, point $D$ divides side $\overline{AC}$ so that $AD:DC=1:2$. Let $E$ be the midpoint of $\overline{BD}$ and let $F$ be the point of intersection of line $BC$ and line $AE$. Given that the area of $\triangle ABC$ is $360$, what is the area of $\triangle EBF$?

[asy] unitsize(2cm); pair A,B,C,DD,EE,FF; B = (0,0); C = (3,0);  A = (1.2,1.7); DD = (2/3)*A+(1/3)*C; EE = (B+DD)/2; FF = intersectionpoint(B--C,A--A+2*(EE-A)); draw(A--B--C--cycle); draw(A--FF);  draw(B--DD);dot(A);  label("$A$",A,N); dot(B);  label("$B$", B,SW);dot(C);  label("$C$",C,SE); dot(DD);  label("$D$",DD,NE); dot(EE);  label("$E$",EE,NW); dot(FF);  label("$F$",FF,S); [/asy]


$\textbf{(A) }24\qquad\textbf{(B) }30\qquad\textbf{(C) }32\qquad\textbf{(D) }36\qquad\textbf{(E) }40$

Solution

Problem 25

Alice has $24$ apples. In how many ways can she share them with Becky and Chris so that each of the people has at least $2$ apples? $\textbf{(A) }105\qquad\textbf{(B) }114\qquad\textbf{(C) }190\qquad\textbf{(D) }210\qquad\textbf{(E) }380$

Solution

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Link back to original page: https://artofproblemsolving.com/wiki/index.php/2019_AMC_8