Difference between revisions of "2019 AMC 8 Problems/Problem 17"

(Solution 2)
(Solution 1(Telescoping))
Line 12: Line 12:
 
<cmath>\left(\frac{1\cdot100}{2\cdot99}\right)= \boxed{\textbf{(B)}\frac{50}{99}}</cmath>
 
<cmath>\left(\frac{1\cdot100}{2\cdot99}\right)= \boxed{\textbf{(B)}\frac{50}{99}}</cmath>
  
~Gumball & phoenixfire
+
~ hpotter0104
  
 
==Solution 2==
 
==Solution 2==

Revision as of 15:04, 24 June 2020

Problem 17

What is the value of the product \[\left(\frac{1\cdot3}{2\cdot2}\right)\left(\frac{2\cdot4}{3\cdot3}\right)\left(\frac{3\cdot5}{4\cdot4}\right)\cdots\left(\frac{97\cdot99}{98\cdot98}\right)\left(\frac{98\cdot100}{99\cdot99}\right)?\]

$\textbf{(A) }\frac{1}{2}\qquad\textbf{(B) }\frac{50}{99}\qquad\textbf{(C) }\frac{9800}{9801}\qquad\textbf{(D) }\frac{100}{99}\qquad\textbf{(E) }50$

Solution 1(Telescoping)

We rewrite: \[\frac{1}{2}\cdot\left(\frac{3\cdot2}{2\cdot3}\right)\left(\frac{4\cdot3}{3\cdot4}\right)\cdots\left(\frac{99\cdot98}{98\cdot99}\right)\cdot\frac{100}{99}\]

The middle terms cancel, leaving us with

\[\left(\frac{1\cdot100}{2\cdot99}\right)= \boxed{\textbf{(B)}\frac{50}{99}}\]

~ hpotter0104

Solution 2

If you calculate the first few values of the equation, all of the values tend to $\frac{1}{2}$, but are not equal to it. The answer closest to $\frac{1}{2}$ but not equal to it is $\boxed{\textbf{(B)}\frac{50}{99}}$.~hpotter0104

Solution 3

Rewriting the numerator and the denominator, we get $\frac{\frac{100! \cdot 98!}{2}}{\left(99!\right)^2}$. We can simplify by canceling 99! on both sides, leaving us with: $\frac{100 \cdot 98!}{2 \cdot 99!}$ We rewrite $99!$ as $99 \cdot 98!$ and cancel $98!$, which gets $\boxed{\frac{50}{99}}$. Answer B.

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 16
Followed by
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png