Difference between revisions of "2019 AMC 8 Problems/Problem 3"

m (Solution 1)
(Solution 4(probably won't use this solution))
Line 24: Line 24:
 
==Solution 4(probably won't use this solution)==
 
==Solution 4(probably won't use this solution)==
 
We use our insane mental calculator to find out that <math>\frac{15}{11} \approx 1.36</math>, <math>\frac{19}{15} \approx 1.27</math>, and <math>\frac{17}{13} \approx 1.31</math>. Thus, our answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
 
We use our insane mental calculator to find out that <math>\frac{15}{11} \approx 1.36</math>, <math>\frac{19}{15} \approx 1.27</math>, and <math>\frac{17}{13} \approx 1.31</math>. Thus, our answer is <math>\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}</math>.
 +
 +
~~ by an insane math guy
  
 
==See Also==
 
==See Also==

Revision as of 17:11, 1 July 2020

Problem 3

Which of the following is the correct order of the fractions $\frac{15}{11},\frac{19}{15},$ and $\frac{17}{13},$ from least to greatest?

$\textbf{(A) }\frac{15}{11}< \frac{17}{13}< \frac{19}{15}  \qquad\textbf{(B) }\frac{15}{11}< \frac{19}{15}<\frac{17}{13}    \qquad\textbf{(C) }\frac{17}{13}<\frac{19}{15}<\frac{15}{11}    \qquad\textbf{(D) } \frac{19}{15}<\frac{15}{11}<\frac{17}{13}   \qquad\textbf{(E) }   \frac{19}{15}<\frac{17}{13}<\frac{15}{11}$

Solution 1

each one is x+4/x so we are really comparing 4/11,4/15, and 4/13 where you can see 4/11>4/13>4/15 so the answer is $\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}$.

Solution 2

We take a common denominator: \[\frac{15}{11},\frac{19}{15}, \frac{17}{13} = \frac{15\cdot 15 \cdot 13}{11\cdot 15 \cdot 13},\frac{19 \cdot 11 \cdot 13}{15\cdot 11 \cdot 13}, \frac{17 \cdot 11 \cdot 15}{13\cdot 11 \cdot 15} = \frac{2925}{2145},\frac{2717}{2145},\frac{2805}{2145}.\]

Since $2717<2805<2925$ it follows that the answer is $\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}$.

-xMidnightFirex

~ dolphin7 - I took your idea and made it an explanation.

Solution 3

When $\frac{x}{y}>1$ and $z>0$, $\frac{x+z}{y+z}<\frac{x}{y}$. Hence, the answer is $\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}$. ~ ryjs

This is also similar to Problem 20 on the AMC 2012.

Solution 4(probably won't use this solution)

We use our insane mental calculator to find out that $\frac{15}{11} \approx 1.36$, $\frac{19}{15} \approx 1.27$, and $\frac{17}{13} \approx 1.31$. Thus, our answer is $\boxed{\textbf{(E)}\frac{19}{15}<\frac{17}{13}<\frac{15}{11}}$.

~~ by an insane math guy

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 2
Followed by
Problem 4
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Wot blitz