Difference between revisions of "2020 AMC 10A Problems/Problem 11"
m (→Solution 3) |
(Another solution) |
||
Line 29: | Line 29: | ||
Solving for the median of the two numbers, we get <math>\boxed{\textbf{(C) } 1976.5}</math> <br> | Solving for the median of the two numbers, we get <math>\boxed{\textbf{(C) } 1976.5}</math> <br> | ||
~toastybaker | ~toastybaker | ||
+ | |||
+ | == Solution 4 == | ||
+ | We note that <math>44^2 = 1936</math>, which is the first square less than <math>2020</math>, which means that there are 44 addition terms before <math>2020</math>. This makes <math>2020</math> the 2064th term. To find the median, we need the 2020th and 2021th term. We note that every term before <math>2020</math> is one less than the previous term (that is, we subtract 1 to get the previous term). If <math>2020</math> is the 2064th term, than <math>2020 - 34</math> is the (2064 - 34)th term. So, the 2020th term is <math>1976</math>. The next term (term 2021) is <math>1977</math>, and the average of these two terms is the median, or <math>\boxed{\textbf{(C) } 1976.5}</math>. | ||
+ | ~ primegn | ||
==Video Solution== | ==Video Solution== |
Revision as of 17:22, 15 August 2020
- The following problem is from both the 2020 AMC 12A #8 and 2020 AMC 10A #11, so both problems redirect to this page.
Contents
Problem 11
What is the median of the following list of numbers
Solution 1
We can see that is less than 2020. Therefore, there are of the numbers after . Also, there are numbers that are under and equal to . Since is equal to , it, with the other squares, will shift our median's placement up . We can find that the median of the whole set is , and gives us . Our answer is .
~aryam
Solution 2
As we are trying to find the median of a -term set, we must find the average of the th and st terms.
Since is slightly greater than , we know that the perfect squares through are less than , and the rest are greater. Thus, from the number to the number , there are terms. Since is less than and less than , we will only need to consider the perfect square terms going down from the th term, , after going down terms. Since the th and st terms are only and terms away from the th term, we can simply subtract from and from to get the two terms, which are and . Averaging the two, we get ~emerald_block
Solution 3
We want to know the th term and the st term to get the median.
We know that
So numbers are in between to .
So the sum of and will result in , which means that is the th number.
Also, notice that , which is larger than .
Then the th term will be , and similarly the th term will be .
Solving for the median of the two numbers, we get
~toastybaker
Solution 4
We note that , which is the first square less than , which means that there are 44 addition terms before . This makes the 2064th term. To find the median, we need the 2020th and 2021th term. We note that every term before is one less than the previous term (that is, we subtract 1 to get the previous term). If is the 2064th term, than is the (2064 - 34)th term. So, the 2020th term is . The next term (term 2021) is , and the average of these two terms is the median, or . ~ primegn
Video Solution
~IceMatrix
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 7 |
Followed by Problem 9 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.