Difference between revisions of "2010 AMC 12A Problems/Problem 16"
Mathboy282 (talk | contribs) (→Solution) |
Mathboy282 (talk | contribs) (→Solution) |
||
Line 32: | Line 32: | ||
Adding up the two cases we get <math>\frac{1}{3}+\frac{55}{168} = \boxed{\frac{37}{56}\ \textbf{(B)}}</math> | Adding up the two cases we get <math>\frac{1}{3}+\frac{55}{168} = \boxed{\frac{37}{56}\ \textbf{(B)}}</math> | ||
− | ~Edits | + | ~Edits by mathboy282 |
===Note=== | ===Note=== | ||
We have for case 1 <math>\frac{1 \cdot \binom{8}{2}}{\binom{9}{3}}</math> since <math>1</math> is the number of ways to pick 9 and <math>\binom{8}{2}</math> is the number of ways to pick the rest 2 numbers. <math>\binom{9}{3}</math> is just from 9 numbers pick 3. | We have for case 1 <math>\frac{1 \cdot \binom{8}{2}}{\binom{9}{3}}</math> since <math>1</math> is the number of ways to pick 9 and <math>\binom{8}{2}</math> is the number of ways to pick the rest 2 numbers. <math>\binom{9}{3}</math> is just from 9 numbers pick 3. | ||
+ | |||
+ | ~mathboy282 | ||
==Video Solution by the Beauty of Math== | ==Video Solution by the Beauty of Math== |
Revision as of 19:45, 13 December 2020
- The following problem is from both the 2010 AMC 12A #16 and 2010 AMC 10A #18, so both problems redirect to this page.
Problem
Bernardo randomly picks 3 distinct numbers from the set and arranges them in descending order to form a 3-digit number. Silvia randomly picks 3 distinct numbers from the set and also arranges them in descending order to form a 3-digit number. What is the probability that Bernardo's number is larger than Silvia's number?
Solution
We can solve this by breaking the problem down into cases and adding up the probabilities.
Case : Bernardo picks .
If Bernardo picks a then it is guaranteed that his number will be larger than Silvia's. The probability that he will pick a is .
Case : Bernardo does not pick .
Since the chance of Bernardo picking is , the probability of not picking is .
If Bernardo does not pick 9, then he can pick any number from to . Since Bernardo is picking from the same set of numbers as Silvia, the probability that Bernardo's number is larger is equal to the probability that Silvia's number is larger.
Ignoring the for now, the probability that they will pick the same number is the number of ways to pick Bernardo's 3 numbers divided by the number of ways to pick any 3 numbers.
We get this probability to be
Probability of Bernardo's number being greater is
Factoring the fact that Bernardo could've picked a but didn't:
Adding up the two cases we get
~Edits by mathboy282
Note
We have for case 1 since is the number of ways to pick 9 and is the number of ways to pick the rest 2 numbers. is just from 9 numbers pick 3.
~mathboy282
Video Solution by the Beauty of Math
https://youtu.be/rsURe5Xh-j0?t=590
See also
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.