Difference between revisions of "2021 AIME II Problems/Problem 12"

(Created page with "==Problem== These problems will not be posted until the 2021 AIME II is released on Thursday, March 25, 2021. ==Solution== We can't have a solution without a problem. ==See a...")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
These problems will not be posted until the 2021 AIME II is released on Thursday, March 25, 2021.
+
A convex quadrilateral has area <math>30</math> and side lengths <math>5, 6, 9,</math> and <math>7,</math> in that order. Denote by <math>\theta</math> the measure of the acute angle formed by the diagonals of the quadrilateral. Then <math>\tan \theta</math> can be written in the form <math>\tfrac{m}{n}</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m + n</math>.
 +
 
 
==Solution==
 
==Solution==
 
We can't have a solution without a problem.
 
We can't have a solution without a problem.

Revision as of 14:57, 22 March 2021

Problem

A convex quadrilateral has area $30$ and side lengths $5, 6, 9,$ and $7,$ in that order. Denote by $\theta$ the measure of the acute angle formed by the diagonals of the quadrilateral. Then $\tan \theta$ can be written in the form $\tfrac{m}{n}$, where $m$ and $n$ are relatively prime positive integers. Find $m + n$.

Solution

We can't have a solution without a problem.

See also

2021 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png