Difference between revisions of "1995 AIME Problems/Problem 7"

(Solution)
Line 6: Line 6:
 
== Solution ==
 
== Solution ==
 
From the givens,  
 
From the givens,  
<math>2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}</math>, and adding <math>\sin^2 t + \cos^2t = 1</math> to both sides gives <math>(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}</math>.  Completing the square on the left in the variable <math>(\sin t + \cos t)</math> gives <math>\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}</math>.  Since <math>|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}</math>, we have <math>\sin t + \cos t = \sqrt{5}{2} - 1</math>.  Subtracting twice this from our original equation gives <math>(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}</math>, so the answer is <math>13 + 4 + 10 = 027</math>.
+
<math>2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}</math>, and adding <math>\sin^2 t + \cos^2t = 1</math> to both sides gives <math>(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}</math>.  Completing the square on the left in the variable <math>(\sin t + \cos t)</math> gives <math>\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}</math>.  Since <math>|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}</math>, we have <math>\sin t + \cos t = \sqrt{\frac{5}{2}} - 1</math>.  Subtracting twice this from our original equation gives <math>(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}</math>, so the answer is <math>13 + 4 + 10 = 027</math>.
  
 
== See also ==
 
== See also ==

Revision as of 07:58, 9 September 2007

Problem

Given that $\displaystyle (1+\sin t)(1+\cos t)=5/4$ and

$(1-\sin t)(1-\cos t)=\frac mn-\sqrt{k},$

where $\displaystyle k, m,$ and $\displaystyle n_{}$ are positive integers with $\displaystyle m_{}$ and $\displaystyle n_{}$ relatively prime, find $\displaystyle k+m+n.$

Solution

From the givens, $2\sin t \cos t + 2 \sin t + 2 \cos t = \frac{1}{2}$, and adding $\sin^2 t + \cos^2t = 1$ to both sides gives $(\sin t + \cos t)^2 + 2(\sin t + \cos t) = \frac{3}{2}$. Completing the square on the left in the variable $(\sin t + \cos t)$ gives $\sin t + \cos t = -1 \pm \sqrt{\frac{5}{2}}$. Since $|\sin t + \cos t| \leq \sqrt 2 < 1 + \sqrt{\frac{5}{2}}$, we have $\sin t + \cos t = \sqrt{\frac{5}{2}} - 1$. Subtracting twice this from our original equation gives $(\sin t - 1)(\cos t - 1) = \sin t \cos t - \sin t - \cos t + 1 = \frac{13}{4} - \sqrt{10}$, so the answer is $13 + 4 + 10 = 027$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 6
Followed by
Problem 8
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions