Difference between revisions of "2019 AMC 10B Problems/Problem 6"

(Solution)
Line 32: Line 32:
  
 
~Randomlygenerated
 
~Randomlygenerated
 +
 +
===Solution 5===
 +
 +
Rewrite <math>(n+1)! + (n+2)! = 440</math> as <math>(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!.</math> Factoring out the <math>n!</math> we get <math>n!(n + 1 + (n+1)(n+2)) = 440.</math> Expand this to get <math>n!(n^2 + 4n + 3) = 440.</math> Factor this to get <math>(n + 1)(n + 3) = 440.</math> If we take the prime factorization of <math>440</math> we see that it is <math>2^3 * 5 * 11.</math> Intuitively, we can find that <math>n + 1 = 20</math> and <math>n + 3 = 22.</math> Therefore, <math>n = 19.</math> Since the problem asks for the sum of the didgits of <math>n</math>, we finally calculate <math>1 + 9 = 10</math> and get answer choice <math>\boxed{\textbf{(C) }10}</math>.
  
 
== Video Solution ==
 
== Video Solution ==

Revision as of 14:36, 28 June 2022

The following problem is from both the 2019 AMC 10B #6 and 2019 AMC 12B #4, so both problems redirect to this page.

Problem

There is a positive integer $n$ such that $(n+1)! + (n+2)! = n! \cdot 440$. What is the sum of the digits of $n$?

$\textbf{(A) }3\qquad\textbf{(B) }8\qquad\textbf{(C) }10\qquad\textbf{(D) }11\qquad\textbf{(E) }12$

Solution

Solution 1

\[\begin{split}& (n+1)n! + (n+2)(n+1)n! = 440 \cdot n! \\ \Rightarrow \ &n![n+1 + (n+2)(n+1)] = 440 \cdot n! \\ \Rightarrow \ &n + 1 + n^2 + 3n + 2 = 440 \\ \Rightarrow \ &n^2 + 4n - 437 = 0\end{split}\]

Solving by the quadratic formula, $n = \frac{-4\pm \sqrt{16+437\cdot4}}{2} = \frac{-4\pm 42}{2} = \frac{38}{2} = 19$ (since clearly $n \geq 0$). The answer is therefore $1 + 9 = \boxed{\textbf{(C) }10}$.

Solution 2

Dividing both sides by $n!$ gives \[(n+1)+(n+2)(n+1)=440 \Rightarrow n^2+4n-437=0 \Rightarrow (n-19)(n+23)=0.\] Since $n$ is non-negative, $n=19$. The answer is $1 + 9 = \boxed{\textbf{(C) }10}$.

Solution 3

Dividing both sides by $n!$ as before gives $(n+1)+(n+1)(n+2)=440$. Now factor out $(n+1)$, giving $(n+1)(n+3)=440$. By considering the prime factorization of $440$, a bit of experimentation gives us $n+1=20$ and $n+3=22$, so $n=19$, so the answer is $1 + 9 = \boxed{\textbf{(C) }10}$.

Solution 4

Since $(n+1)! + (n+2)! = (n+1)n! + (n+2)(n+1)n! = 440 \cdot n!$, the result can be factored into $(n+1)(n+3)n!=440 \cdot n!$ and divided by $n!$ on both sides to get $(n+1)(n+3)=440$. From there, it is easier to complete the square with the quadratic $(n+1)(n+3) = n^2 + 4n + 3$, so $n^2+4n+4=441 \Rightarrow (n+2)^2=441$. Solving for $n$ results in $n=19,-23$, and since $n>0$, $n=19$ and the answer is $1 + 9 = \boxed{\textbf{(C) }10}$.

~Randomlygenerated

Solution 5

Rewrite $(n+1)! + (n+2)! = 440$ as $(n+1)n! + (n+2)(n+1)n! = 440 \cdot n!.$ Factoring out the $n!$ we get $n!(n + 1 + (n+1)(n+2)) = 440.$ Expand this to get $n!(n^2 + 4n + 3) = 440.$ Factor this to get $(n + 1)(n + 3) = 440.$ If we take the prime factorization of $440$ we see that it is $2^3 * 5 * 11.$ Intuitively, we can find that $n + 1 = 20$ and $n + 3 = 22.$ Therefore, $n = 19.$ Since the problem asks for the sum of the didgits of $n$, we finally calculate $1 + 9 = 10$ and get answer choice $\boxed{\textbf{(C) }10}$.

Video Solution

https://youtu.be/ba6w1OhXqOQ?t=1956

~ pi_is_3.14

Video Solution

https://youtu.be/7xf_g3YQk00

~IceMatrix

https://youtu.be/6YFN_hwotUk

~savannahsolver

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2019 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png