Difference between revisions of "2007 iTest Problems/Problem 4"

(category)
(Solution)
 
Line 5: Line 5:
  
 
==Solution==
 
==Solution==
The number of arrangements of the group of letters HHTT is <math>\frac{4!}{2!*2!}=6</math>, so the probability that two of the flips are heads is <math>\frac{6}{2^4}=\frac{3}{8} \Rightarrow D</math>
+
The number of arrangements of the group of letters HHTT is <math>\frac{4!}{2!*2!}=6</math>, so the probability that two of the flips are heads is <math>\frac{6}{2^4}=\frac{3}{8} \Rightarrow C</math>
  
 
==See Also==
 
==See Also==
 
{{iTest box|year=2007|num-b=3|num-a=5}}
 
{{iTest box|year=2007|num-b=3|num-a=5}}
 
[[Category:Introductory Combinatorics Problems]]
 
[[Category:Introductory Combinatorics Problems]]

Latest revision as of 18:59, 21 May 2008

Problem

Star flips a quarter four times. Find the probability that the quarter lands heads exactly twice.

$\mathrm{(A)}\,\frac{1}{8}\quad\mathrm{(B)}\,\frac{3}{16}\quad\mathrm{(C)}\,\frac{3}{8}\quad\mathrm{(D)}\,\frac{1}{2}$

Solution

The number of arrangements of the group of letters HHTT is $\frac{4!}{2!*2!}=6$, so the probability that two of the flips are heads is $\frac{6}{2^4}=\frac{3}{8} \Rightarrow C$

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 3
Followed by:
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4