Difference between revisions of "2010 AMC 12A Problems/Problem 14"
(Created page with '== Problem == Nondegenerate <math>\triangle ABC</math> has integer side lengths, <math>\overline{BD}</math> is an angle bisector, <math>AD = 3</math>, and <math>DC=8</math>. What…') |
m (Semi-automated contest formatting - script by azjps) |
||
Line 6: | Line 6: | ||
== Solution == | == Solution == | ||
By the [[Angle Bisector Theorem]], we know that <math>\frac{AB}{3} = \frac{BC}{8}</math>. If we use the lowest possible integer values for AB and BC (the measures of AD and DC, respectively), then <math>AB + BC = AD + DC = AC</math>, contradicting the [[Triangle Inequality]]. If we use the next lowest values (<math>AB = 6</math> and <math>BC = 16</math>), the Triangle Inequality is satisfied. Therefore, our answer is <math>6 + 16 + 3 + 8 = \boxed{33}</math>, or choice <math>\textbf{(B)}</math>. | By the [[Angle Bisector Theorem]], we know that <math>\frac{AB}{3} = \frac{BC}{8}</math>. If we use the lowest possible integer values for AB and BC (the measures of AD and DC, respectively), then <math>AB + BC = AD + DC = AC</math>, contradicting the [[Triangle Inequality]]. If we use the next lowest values (<math>AB = 6</math> and <math>BC = 16</math>), the Triangle Inequality is satisfied. Therefore, our answer is <math>6 + 16 + 3 + 8 = \boxed{33}</math>, or choice <math>\textbf{(B)}</math>. | ||
+ | |||
+ | == See also == | ||
+ | {{AMC12 box|year=2010|num-b=13|num-a=15|ab=A}} | ||
+ | |||
+ | [[Category:Introductory Geometry Problems]] |
Revision as of 22:31, 25 February 2010
Problem
Nondegenerate has integer side lengths, is an angle bisector, , and . What is the smallest possible value of the perimeter?
Solution
By the Angle Bisector Theorem, we know that . If we use the lowest possible integer values for AB and BC (the measures of AD and DC, respectively), then , contradicting the Triangle Inequality. If we use the next lowest values ( and ), the Triangle Inequality is satisfied. Therefore, our answer is , or choice .
See also
2010 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 13 |
Followed by Problem 15 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |