Difference between revisions of "2005 AIME I Problems/Problem 7"
m |
Einstein00 (talk | contribs) (→Solution) |
||
Line 7: | Line 7: | ||
<center>[[Image:AIME_2005I_Solution_7_1.png]]</center> | <center>[[Image:AIME_2005I_Solution_7_1.png]]</center> | ||
− | Draw the [[perpendicular]]s from <math>C</math> and <math>D</math> to <math>AB</math>, labeling the intersection points as <math>E</math> and <math>F</math>. This forms 2 <math>30-60-90</math> [[right triangle]]s, so <math>AE = 5</math> and <math>BF = 4</math>. Also, if we draw the horizontal line extending from <math>C</math> to a point <math>G</math> on the line <math>DE</math>, we find another right triangle <math>\triangle DGC</math>. <math>DG = DE - CF = 5\sqrt{3} - 4\sqrt{3} = \sqrt{3}</math>. The [[Pythagorean | + | Draw the [[perpendicular]]s from <math>C</math> and <math>D</math> to <math>AB</math>, labeling the intersection points as <math>E</math> and <math>F</math>. This forms 2 <math>30-60-90</math> [[right triangle]]s, so <math>AE = 5</math> and <math>BF = 4</math>. Also, if we draw the horizontal line extending from <math>C</math> to a point <math>G</math> on the line <math>DE</math>, we find another right triangle <math>\triangle DGC</math>. <math>DG = DE - CF = 5\sqrt{3} - 4\sqrt{3} = \sqrt{3}</math>. The [[Pythagorean Theorem]] yields that <math>GC^2 = 12^2 - \sqrt{3}^2 = 141</math>, so <math>EF = GC = \sqrt{141}</math>. Therefore, <math>AB = 5 + 4 + \sqrt{141} = 9 + \sqrt{141}</math>, and <math>p + q = \boxed{150}</math>. |
=== Solution 2 === | === Solution 2 === | ||
Line 13: | Line 13: | ||
Extend <math>AD</math> and <math>BC</math> to an intersection at point <math>E</math>. We get an [[equilateral triangle]] <math>ABE</math>. We denote the length of a side of <math>\triangle ABE</math> as <math>s</math> and solve for it using the [[Law of Cosines]]: <cmath>12^2 = (s - 10)^2 + (s - 8)^2 - 2(s - 10)(s - 8)\cos{60}</cmath> | Extend <math>AD</math> and <math>BC</math> to an intersection at point <math>E</math>. We get an [[equilateral triangle]] <math>ABE</math>. We denote the length of a side of <math>\triangle ABE</math> as <math>s</math> and solve for it using the [[Law of Cosines]]: <cmath>12^2 = (s - 10)^2 + (s - 8)^2 - 2(s - 10)(s - 8)\cos{60}</cmath> | ||
<cmath>144 = 2s^2 - 36s + 164 - (s^2 - 18s + 80)</cmath> This simplifies to <math>s^2 - 18s - 60=0</math>; the [[quadratic formula]] yields the (discard the negative result) same result of <math>9 + \sqrt{141}</math>. | <cmath>144 = 2s^2 - 36s + 164 - (s^2 - 18s + 80)</cmath> This simplifies to <math>s^2 - 18s - 60=0</math>; the [[quadratic formula]] yields the (discard the negative result) same result of <math>9 + \sqrt{141}</math>. | ||
+ | |||
+ | === Solution 3 === | ||
+ | Extend <math>BC</math> and <math>AD</math> to meet at point <math>E</math>, forming an equilateral triangle <math>\triangle ABE</math>. Draw a line from <math>C</math> parallel to <math>AB</math> so that it intersects <math>AD</math> at point <math>F</math>. Then, apply [[Stewart's Theorem]] on <math>\triangle CFE</math>. Let <math>CE=x</math>. <cmath>2x(x-2) + 12^2x = 2x^2 + x^2(x-2)</cmath> <cmath>x^3 - 2x^2 - 140x = 0</cmath> <cmath>x^2 - 2x - 140 = 0</cmath> By the quadratic formula (discarding the negative result), <math>x = 1 + \sqrt{141}</math>, giving <math>AB = 9 + \sqrt{141}</math> for a final answer of <math>p+q=150</math>. | ||
== See also == | == See also == |
Revision as of 22:33, 28 December 2011
Problem
In quadrilateral and Given that where and are positive integers, find
Solution
Solution 1
Draw the perpendiculars from and to , labeling the intersection points as and . This forms 2 right triangles, so and . Also, if we draw the horizontal line extending from to a point on the line , we find another right triangle . . The Pythagorean Theorem yields that , so . Therefore, , and .
Solution 2
Extend and to an intersection at point . We get an equilateral triangle . We denote the length of a side of as and solve for it using the Law of Cosines: This simplifies to ; the quadratic formula yields the (discard the negative result) same result of .
Solution 3
Extend and to meet at point , forming an equilateral triangle . Draw a line from parallel to so that it intersects at point . Then, apply Stewart's Theorem on . Let . By the quadratic formula (discarding the negative result), , giving for a final answer of .
See also
2005 AIME I (Problems • Answer Key • Resources) | ||
Preceded by Problem 6 |
Followed by Problem 8 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |