Difference between revisions of "1997 AIME Problems/Problem 11"
(→Problem) |
Mathgeek2006 (talk | contribs) m (→Solution) |
||
Line 7: | Line 7: | ||
=== Solution 1 === | === Solution 1 === | ||
<cmath>\begin{eqnarray*} x &=& \frac {\sum_{n = 1}^{44} \cos n^\circ}{\sum_{n = 1}^{44} \sin n^\circ} = \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\\ | <cmath>\begin{eqnarray*} x &=& \frac {\sum_{n = 1}^{44} \cos n^\circ}{\sum_{n = 1}^{44} \sin n^\circ} = \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\\ | ||
− | &=& \frac {\cos (45 - 1) + \cos(45 - 2) + \dots + \cos(45 - 44)}{\sin 1 + \sin 2 + \dots + \sin 44}\end{eqnarray*}</cmath> | + | &=& \frac {\cos (45 - 1) + \cos(45 - 2) + \dots + \cos(45 - 44)}{\sin 1 + \sin 2 + \dots + \sin 44} |
+ | \end{eqnarray*}</cmath> | ||
Using the identity <math>\sin a + \sin b = 2\sin \frac{a+b}2 \cos \frac{a-b}{2}</math> <math>\Longrightarrow \sin x + \cos x</math> <math>= \sin x + \sin (90-x)</math> <math>= 2 \sin 45 \cos (45-x)</math> <math>= \sqrt{2} \cos (45-x)</math>, that [[summation]] reduces to | Using the identity <math>\sin a + \sin b = 2\sin \frac{a+b}2 \cos \frac{a-b}{2}</math> <math>\Longrightarrow \sin x + \cos x</math> <math>= \sin x + \sin (90-x)</math> <math>= 2 \sin 45 \cos (45-x)</math> <math>= \sqrt{2} \cos (45-x)</math>, that [[summation]] reduces to | ||
Line 13: | Line 14: | ||
<cmath>\begin{eqnarray*}x &=& \left(\frac {1}{\sqrt {2}}\right)\left(\frac {(\cos 1 + \cos2 + \dots + \cos44) + (\sin1 + \sin2 + \dots + \sin44)}{\sin1 + \sin2 + \dots + \sin44}\right)\\ | <cmath>\begin{eqnarray*}x &=& \left(\frac {1}{\sqrt {2}}\right)\left(\frac {(\cos 1 + \cos2 + \dots + \cos44) + (\sin1 + \sin2 + \dots + \sin44)}{\sin1 + \sin2 + \dots + \sin44}\right)\\ | ||
&=& \left(\frac {1}{\sqrt {2}}\right)\left(1 + \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\right) | &=& \left(\frac {1}{\sqrt {2}}\right)\left(1 + \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\right) | ||
+ | \end{eqnarray*} | ||
</cmath> | </cmath> | ||
Line 29: | Line 31: | ||
\sum_{n=1}^{44} \cos n + \sum_{n=1}^{44} \sin n &=& \sum_{n=1}^{44} \sin n + \sin(90-n)\\ | \sum_{n=1}^{44} \cos n + \sum_{n=1}^{44} \sin n &=& \sum_{n=1}^{44} \sin n + \sin(90-n)\\ | ||
&=& \sqrt{2}\sum_{n=1}^{44} \cos(45-n) = \sqrt{2}\sum_{n=1}^{44} \cos n\\ | &=& \sqrt{2}\sum_{n=1}^{44} \cos(45-n) = \sqrt{2}\sum_{n=1}^{44} \cos n\\ | ||
− | \sum_{n=1}^{44} \sin n &=& (\sqrt{2}-1)\sum_{n=1}^{44} \cos n</cmath> | + | \sum_{n=1}^{44} \sin n &=& (\sqrt{2}-1)\sum_{n=1}^{44} \cos n |
+ | \end{eqnarray*}</cmath> | ||
This is the [[ratio]] we are looking for. <math>x</math> reduces to <math>\frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1</math>, and <math>\lfloor 100(\sqrt{2} + 1)\rfloor = \boxed{241}</math>. | This is the [[ratio]] we are looking for. <math>x</math> reduces to <math>\frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1</math>, and <math>\lfloor 100(\sqrt{2} + 1)\rfloor = \boxed{241}</math>. |
Revision as of 17:48, 10 March 2015
Problem 11
Let . What is the greatest integer that does not exceed ?
Solution
Solution 1
Using the identity , that summation reduces to
This fraction is equivalent to . Therefore,
Solution 2
A slight variant of the above solution, note that
This is the ratio we are looking for. reduces to , and .
Solution 3
Consider the sum . The fraction is given by the real part divided by the imaginary part.
The sum can be written (by De Moivre's Theorem with geometric series)
(after multiplying by complex conjugate)
Using the tangent half-angle formula, this becomes .
Dividing the two parts and multiplying each part by 4, the fraction is .
Although an exact value for in terms of radicals will be difficult, this is easily known: it is really large!
So treat it as though it were . The fraction is approximated by .
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 10 |
Followed by Problem 12 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.