Difference between revisions of "1995 AIME Problems/Problem 10"
(→Solution) |
|||
Line 24: | Line 24: | ||
\end{tabular}</cmath> | \end{tabular}</cmath> | ||
− | <math>\boxed{215}</math> is the greatest number in the list, so it is the answer. Note that considering <math>\mod {5}</math> would have shortened the search, since <math>\text{gcd}(5,42)=1</math>, and so within <math>5</math> numbers at least one must be divisible by <math>5</math>. | + | <math>\boxed{215}</math> is the greatest number in the list, so it is the answer. Note that considering <math>\mod {5}</math> would have shortened the search, since <math>\text{gcd}(5,42)=1</math>, and so within <math>5</math> numbers at least one must be divisible by <math>5</math>. |
== See also == | == See also == |
Revision as of 00:43, 30 December 2015
Problem
What is the largest positive integer that is not the sum of a positive integral multiple of and a positive composite integer?
Solution
The requested number must be a prime number. Also, every number that is a multiple of greater than that prime number must also be prime, except for the requested number itself. So we make a table, listing all the primes up to and the numbers that are multiples of greater than them, until they reach a composite number.
is the greatest number in the list, so it is the answer. Note that considering would have shortened the search, since , and so within numbers at least one must be divisible by .
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 9 |
Followed by Problem 11 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.