Difference between revisions of "2013 AMC 12B Problems/Problem 19"
m (→Solution 1) |
Expilncalc (talk | contribs) (Adding solution) |
||
Line 14: | Line 14: | ||
Using the similar triangles in triangle <math>ADC</math> gives <math>AE = \frac{48}{5}</math> and <math>DE = \frac{36}{5}</math>. Quadrilateral <math>ABDF</math> is cyclic, implying that <math>\angle{B} + \angle{DFA}</math> = 180°. Therefore, <math>\angle{B} = \angle{EFA}</math>, and triangles <math>AEF</math> and <math>ADB </math> are similar. Solving the resulting proportion gives <math>EF = 4</math>. Therefore, <math>DF = ED - EF = \frac{16}{5}. \implies{\boxed{(B)}}</math> | Using the similar triangles in triangle <math>ADC</math> gives <math>AE = \frac{48}{5}</math> and <math>DE = \frac{36}{5}</math>. Quadrilateral <math>ABDF</math> is cyclic, implying that <math>\angle{B} + \angle{DFA}</math> = 180°. Therefore, <math>\angle{B} = \angle{EFA}</math>, and triangles <math>AEF</math> and <math>ADB </math> are similar. Solving the resulting proportion gives <math>EF = 4</math>. Therefore, <math>DF = ED - EF = \frac{16}{5}. \implies{\boxed{(B)}}</math> | ||
+ | ==Solution 3== | ||
+ | If we draw a diagram as given, but then add <math>DG</math> as an altitude to use the Pythagorean theorem, we end up with similar triangles <math>\triangle{DFG}</math> and <math>\triangle{DCE}</math>. Thus, <math>FG</math> is <math>3/5</math>x and <math>DG</math> is <math>4/5</math>x. Using Pythagorean theorem, we now get | ||
+ | |||
+ | <math>BF = \sqrt{(4/5x + 5)^2 + (3/5x)^2}</math> | ||
== See also == | == See also == | ||
{{AMC12 box|year=2013|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2013|ab=B|num-b=18|num-a=20}} |
Revision as of 18:53, 3 February 2017
- The following problem is from both the 2013 AMC 12B #19 and 2013 AMC 10B #23, so both problems redirect to this page.
Problem
In triangle , , , and . Distinct points , , and lie on segments , , and , respectively, such that , , and . The length of segment can be written as , where and are relatively prime positive integers. What is ?
Solution 1
Since , quadrilateral is cyclic. It follows that . In addition, since , triangles and are similar. It follows that . By Ptolemy, we have . Cancelling , the rest is easy. We obtain
Solution 2
Using the similar triangles in triangle gives and . Quadrilateral is cyclic, implying that = 180°. Therefore, , and triangles and are similar. Solving the resulting proportion gives . Therefore,
Solution 3
If we draw a diagram as given, but then add as an altitude to use the Pythagorean theorem, we end up with similar triangles and . Thus, is x and is x. Using Pythagorean theorem, we now get
See also
2013 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
2013 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 22 |
Followed by Problem 24 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.