Difference between revisions of "2017 AMC 10B Problems/Problem 13"

(Created page with "==Problem== Placeholder ==Solution== Placeholder ==See Also== {{AMC10 box|year=2017|ab=B|num-b=12|num-a=14}} {{MAA Notice}}")
 
(Problem)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Placeholder
+
There are <math>20</math> students participating in an after-school program offering classes in yoga, bridge, and painting. Each student must take at least one of these three classes, but may take two or all three. There are 10 students taking yoga, 13 taking bridge, and 9 taking painting. There are 9 students taking at least two classes. How many students are taking all three classes?
 +
 
 +
<math>\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5</math>
  
 
==Solution==
 
==Solution==

Revision as of 12:26, 16 February 2017

Problem

There are $20$ students participating in an after-school program offering classes in yoga, bridge, and painting. Each student must take at least one of these three classes, but may take two or all three. There are 10 students taking yoga, 13 taking bridge, and 9 taking painting. There are 9 students taking at least two classes. How many students are taking all three classes?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Solution

Placeholder

See Also

2017 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png