Difference between revisions of "2018 AMC 10B Problems/Problem 24"

Line 6: Line 6:
  
  
 +
Answer: 15sqrt(3)/32
  
Answer: 15sqrt(3)/32
+
==Solution==
 +
 
 +
==See Also==
 +
{{AMC10 box|year=2018|ab=B|num-b=23|num-a=25}}
 +
{{AMC12 box|year=2018|ab=B|num-b=19|num-a=21}}
 +
{{MAA Notice}}

Revision as of 15:23, 16 February 2018

Problem

Let ABCDEFG be a regular hexagon with side length 1. Denote X, Y, and Z the midpoints of sides (segment) AB, (segment) CD, and (segment) EF, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of (insert) triangle symbol) ACE and (insert triangle symbol) XYZ?

$\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad$


Answer: 15sqrt(3)/32

Solution

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 23
Followed by
Problem 25
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 19
Followed by
Problem 21
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png