Difference between revisions of "2018 AMC 10B Problems/Problem 21"

m (Solution)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A) } 324 \qquad \textbf{(B) } 330 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 361 \qquad \textbf{(E) } 646</math>
 
<math>\textbf{(A) } 324 \qquad \textbf{(B) } 330 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 361 \qquad \textbf{(E) } 646</math>
  
==Solution==
+
==Solution 1==
  
 
Prime factorizing <math>323</math> gives you <math>17 \cdot 19</math>. Looking at the answer choices, <math>\fbox{(B) 340}</math> is the smallest number divisible by <math>17</math> or <math>19</math>.
 
Prime factorizing <math>323</math> gives you <math>17 \cdot 19</math>. Looking at the answer choices, <math>\fbox{(B) 340}</math> is the smallest number divisible by <math>17</math> or <math>19</math>.
 +
 +
==Solution 2==
 +
Let the next largest divisor be <math>k</math>. Suppose <math>\gcd(k,323)=1</math>. Then, as <math>323|n, k|n</math>, therefore, <math>323\cdot k|n.</math> However, because <math>k>323</math>, <math>323k>323\cdot 324>9999</math>. Therefore, <math>\gcd(k,323)>1</math>. Note that <math>323=17\cdot 19</math>. Therefore, the smallest the gcd can be is <math>17</math> and our answer is <math>323+17=\boxed{\text{(B) }340}</math>.
 +
 +
-tdeng
  
 
==See Also==
 
==See Also==

Revision as of 15:48, 16 February 2018

Problem

Mary chose an even $4$-digit number $n$. She wrote down all the divisors of $n$ in increasing order from left to right: $1,2,...,\dfrac{n}{2},n$. At some moment Mary wrote $323$ as a divisor of $n$. What is the smallest possible value of the next divisor written to the right of $323$.

$\textbf{(A) } 324 \qquad \textbf{(B) } 330 \qquad \textbf{(C) } 340 \qquad \textbf{(D) } 361 \qquad \textbf{(E) } 646$

Solution 1

Prime factorizing $323$ gives you $17 \cdot 19$. Looking at the answer choices, $\fbox{(B) 340}$ is the smallest number divisible by $17$ or $19$.

Solution 2

Let the next largest divisor be $k$. Suppose $\gcd(k,323)=1$. Then, as $323|n, k|n$, therefore, $323\cdot k|n.$ However, because $k>323$, $323k>323\cdot 324>9999$. Therefore, $\gcd(k,323)>1$. Note that $323=17\cdot 19$. Therefore, the smallest the gcd can be is $17$ and our answer is $323+17=\boxed{\text{(B) }340}$.

-tdeng

See Also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2018 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png