Difference between revisions of "2018 AMC 10B Problems/Problem 25"
(→Alternative Solution (Please excuse me for bad latex)) |
(style edits: latex) |
||
Line 40: | Line 40: | ||
Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. (Mudkipswims42) | Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. (Mudkipswims42) | ||
− | == Alternative, Bashy Solution | + | == Alternative, Bashy Solution == |
− | Same as the first solution, x^2=10,000{x}. | + | Same as the first solution, <math>x^2=10,000\{x\} </math>. |
− | We can write x as | + | We can write <math>x</math> as <math>\lfloor x \rfloor+\{x\}</math>. Expanding everything, we get a quadratic in <math>{x}</math> in terms of <math>\lfloor x \rfloor</math>: |
− | {x}^2+ (2 | + | <math>\{x\}^2+ (2\lfloor x \rfloor -10,000)\{x\} + \lfloor x \rfloor ^2 = 0</math> |
We use the quadratic formula to solve for {x}: | We use the quadratic formula to solve for {x}: | ||
− | {x} = | + | <math>\{x\} = \frac {-2\lfloor x \rfloor + 10,000 \pm \sqrt{( -2 \lfloor x \rfloor + 10,000^2- 4\lfloor x \rfloor^2 ) }}{2} </math> |
− | Since 0 | + | Since <math> 0 \leq \{x\} < 1 </math>, we get an inequality which we can then solve. After simplifying a lot, we get that <math>\lfloor x \rfloor^2 + 2\lfloor x \rfloor - 9999 < 0</math>. |
− | Solving over the integers, -101< | + | Solving over the integers, <math>-101 < \lfloor x \rfloor < 99 </math>, and since <math>\lfloor x \rfloor</math> is an integer, there are <math>\boxed{\text{(C)}~199}</math> solutions. Each value of<math> \lfloor x \rfloor</math> should correspond to one value of <math>x</math>, so we are done. |
− | ~Alex_z_Awesome | + | ~ Alex_z_Awesome |
− | + | edited by <math> \tiny{math4fun2} pt\par</math> | |
==See Also== | ==See Also== |
Revision as of 19:02, 17 February 2018
Problem
Let denote the greatest integer less than or equal to . How many real numbers satisfy the equation ?
Solution
This rewrites itself to .
Graphing and we see that the former is a set of line segments with slope from to with a hole at , then to with a hole at etc.
Here is a graph of and for visualization.
Now notice that when then graph has a hole at which the equation passes through and then continues upwards. Thus our set of possible solutions is bounded by . We can see that intersects each of the lines once and there are lines for an answer of . (Mudkipswims42)
Alternative, Bashy Solution
Same as the first solution, .
We can write as . Expanding everything, we get a quadratic in in terms of :
We use the quadratic formula to solve for {x}:
Since , we get an inequality which we can then solve. After simplifying a lot, we get that .
Solving over the integers, , and since is an integer, there are solutions. Each value of should correspond to one value of , so we are done.
~ Alex_z_Awesome
edited by $\tiny{math4fun2} pt\par$ (Error compiling LaTeX. Unknown error_msg)
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.