Difference between revisions of "2007 iTest Problems/Problem 17"

(Solution)
m (Solution)
Line 21: Line 21:
  
 
<math>\tan{x}=\boxed{\frac{5}{7}}</math>
 
<math>\tan{x}=\boxed{\frac{5}{7}}</math>
 +
 +
==See Also==
 +
{{iTest box|year=2007|num-b=16|num-a=18}}
 +
 +
[[Category:Introductory Trigonometry Problems]]

Revision as of 15:54, 10 June 2018

Problem

If $x$ and $y$ are acute angles such that $x+y=\frac{\pi}{4}$ and $\tan{y}=\frac{1}{6}$, find the value of $\tan{x}$.

Solution

From the second equation, we get that $y=\arctan\frac{1}{6}$. Plugging this into the first equation, we get:

$x+\arctan\frac{1}{6}=\frac{\pi}{4}$

Taking the tangent of both sides,

$\tan(x+\arctan\frac{1}{6})=\tan\frac{\pi}{4}=1$

From the tangent addition formula, we then get:

$\frac{{\tan{x}+\frac{1}{6}}}{{1-\frac{1}{6}\tan{x}}}=1$

$\tan{x}+\frac{1}{6}=1-\frac{1}{6}\tan{x}$.

Rearranging and solving, we get

$\tan{x}=\boxed{\frac{5}{7}}$

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 16
Followed by:
Problem 18
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4