Difference between revisions of "2007 iTest Problems/Problem 31"

(Solution to Problem 31)
m (Solution)
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
By an area formula for a triangle, the area of the triangle is <math>\frac{xy}{2}</math>.  Since <math>y = -x + 418</math>, substitute to get <math>\frac{-x^2 + 418x}{2} = -\frac{1}{2}x^2 + 209x</math>. The x-value to get the maximum is <math>\frac{-209}{2 \cdot -\frac{1}{2}} = 209</math>.  Thus, the maximum area of the triangle is <math>\frac{209^2}{2} = \frac{43681}{2} = 21840.5</math>, so the maximum integral area is <math>\boxed{21840}</math>.
+
By an area formula for a triangle, the area of the triangle is <math>\frac{xy}{2}</math>.  Since <math>y = -x + 418</math>, substitute to get <math>\frac{-x^2 + 418x}{2} = -\frac{1}{2}x^2 + 209x</math>.
 +
 
 +
The x-value to get the maximum is <math>\frac{-209}{2 \cdot -\frac{1}{2}} = 209</math>.  Thus, the maximum area of the triangle is <math>\frac{209^2}{2} = \frac{43681}{2} = 21840.5</math>, so the maximum integral area is <math>\boxed{21840}</math>.
  
 
==See Also==
 
==See Also==

Latest revision as of 18:27, 10 June 2018

Problem

Let $x$ be the length of one side of a triangle and let y be the height to that side. If $x+y=418$, find the maximum possible $\textit{integral value}$ of the area of the triangle.

Solution

By an area formula for a triangle, the area of the triangle is $\frac{xy}{2}$. Since $y = -x + 418$, substitute to get $\frac{-x^2 + 418x}{2} = -\frac{1}{2}x^2 + 209x$.

The x-value to get the maximum is $\frac{-209}{2 \cdot -\frac{1}{2}} = 209$. Thus, the maximum area of the triangle is $\frac{209^2}{2} = \frac{43681}{2} = 21840.5$, so the maximum integral area is $\boxed{21840}$.

See Also

2007 iTest (Problems, Answer Key)
Preceded by:
Problem 30
Followed by:
Problem 32
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4