Difference between revisions of "1995 AIME Problems/Problem 6"
Line 23: | Line 23: | ||
Consider divisors of <math>n^2: a,b</math> such that | Consider divisors of <math>n^2: a,b</math> such that | ||
<math>ab=n^2</math>. | <math>ab=n^2</math>. | ||
− | WLOG, let <math>b\ge{a} | + | WLOG, let <math>b\ge{a}</math> and <math>b=\frac{n}{a}</math> |
Then, it is easy to see that <math>a</math> will always be less than <math>b</math> as we go down the divisor list of <math>n^2</math> until we hit <math>n</math>. | Then, it is easy to see that <math>a</math> will always be less than <math>b</math> as we go down the divisor list of <math>n^2</math> until we hit <math>n</math>. |
Revision as of 23:46, 19 August 2018
Problem
Let How many positive integer divisors of are less than but do not divide ?
Solution 1
We know that must have factors by its prime factorization. If we group all of these factors (excluding ) into pairs that multiply to , then one factor per pair is less than , and so there are factors of that are less than . There are factors of , which clearly are less than , but are still factors of . Therefore, using complementary counting, there are factors of that do not divide .
Solution 2
Let for some prime . Then has factors less than .
This simplifies to .
The number of factors of less than is equal to .
Thus, our general formula for is
Number of factors that satisfy the above
Incorporating this into our problem gives .
Solution 3
Consider divisors of such that . WLOG, let and
Then, it is easy to see that will always be less than as we go down the divisor list of until we hit .
Therefore, the median divisor of is .
Then, there are divisors of . Exactly of these divisors are
There are divisors of that are .
Therefore, the answer is .
See also
1995 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.