2023 AMC 12B Problems/Problem 1

Revision as of 20:24, 15 November 2023 by Lprado (talk | contribs)
The following problem is from both the 2023 AMC 10B #1 and 2023 AMC 12B #1, so both problems redirect to this page.

Problem

Mrs. Jones is pouring orange juice into four identical glasses for her four sons. She fills the first three glasses completely but runs out of juice when the fourth glass is only $\frac{1}{3}$ full. What fraction of a glass must Mrs. Jones pour from each of the first three glasses into the fourth glass so that all four glasses will have the same amount of juice?

$\textbf{(A) } \frac{1}{12} \qquad\textbf{(B) } \frac{1}{4} \qquad\textbf{(C) } \frac{1}{6} \qquad\textbf{(D) } \frac{1}{8} \qquad\textbf{(E) } \frac{2}{9}$

Solution 1

The first three glasses each have a full glass. Let's assume that each glass has "1 unit" of juice. It won't matter exactly how much juice everyone has because we're dealing with ratios, and that wouldn't affect our answer. The fourth glass has a glass that is one third. So the total amount of juice will be $1+1+1+\frac{1}{3} = \frac{10}{3}$. If we divide the total amount of juice by 4, we get $\frac{5}{6}$, which should be the amount of juice in each glass. This means that each of the first three glasses will have to contribute $1 - \frac{5}{6} = \boxed{\frac{1}{6}}$ to the fourth glass.

~Sir Ian Seo the Great & lprado

Solution 2

We let $x$ denote how much juice we take from each of the first $3$ children and give to the $4$th child.

We can write the following equation: $1-x=\dfrac13+3x$, since each value represents how much juice each child (equally) has in the end. (Each of the first three children now have $1-x$ juice, and the fourth child has $3x$ more juice on top of their initial $\dfrac13$.)

Solving, we see that $x=\boxed{\textbf{(C) }\dfrac16}.$

~Technodoggo

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=SUnhwbA5_So

See also

2023 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions
2023 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
First Problem
Followed by
Problem 2
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png