1997 AIME Problems/Problem 11

Revision as of 20:41, 4 August 2019 by Tost (talk | contribs)

Problem 11

Let $x=\frac{\sum\limits_{n=1}^{44} \cos n^\circ}{\sum\limits_{n=1}^{44} \sin n^\circ}$. What is the greatest integer that does not exceed $100x$?

Solution

Solution 1

Note that $\frac{\sum_{n=1}^{44} \cos n}{\sum_{n=1}^{44} \sin n} = \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\cos 89 + \cos 88 + \dots + \cos 46}$

Now use the sum-product formula $\cos x + \cos y = 2\cos(\frac{x+y}{2})\cos(\frac{x-y}{2})$ We want to pair up $1, 44$, $2, 43$, $3, 42$, etc. from the numerator and $46, 89$, $47, 88$, $48, 87$ etc. from the denominator. Then we get: \[\frac{\sum_{n=1}^{44} \cos n}{\sum_{n=1}^{44} \sin n} = \frac{2\cos(\frac{45}{2})[\cos(\frac{43}{2})+\cos(\frac{41}{2})+\dots+\cos(\frac{1}{2})}{2\cos(\frac{135}{2})[\cos(\frac{43}{2})+\cos(\frac{41}{2})+\dots+\cos(\frac{1}{2})} \Rightarrow \frac{\cos(\frac{45}{2})}{\cos(\frac{135}{2})}\]

To calculate this number, use the half angle formula. Since $\cos(\frac{x}{2}) = \pm \sqrt{\frac{\cos x + 1}{2}}$, then our number becomes: \[\frac{\sqrt{\frac{\frac{\sqrt{2}}{2} + 1}{2}}}{\sqrt{\frac{\frac{-\sqrt{2}}{2} + 1}{2}}}\] in which we drop the negative roots (as it is clear cosine of $22.5$ and $67.5$ are positive). We can easily simplify this:

\begin{eqnarray*} \frac{\sqrt{\frac{\frac{\sqrt{2}}{2} + 1}{2}}}{\sqrt{\frac{\frac{-\sqrt{2}}{2} + 1}{2}}} &=& \sqrt{\frac{\frac{2+\sqrt{2}}{4}}{\frac{2-\sqrt{2}}{4}}} \\ &=& \sqrt{\frac{2+\sqrt{2}}{2-\sqrt{2}}} \cdot \sqrt{\frac{2+\sqrt{2}}{2+\sqrt{2}}} \\ &=& \sqrt{\frac{(2+\sqrt{2})^2}{2}} \\ &=& \frac{2+\sqrt{2}}{\sqrt{2}} \cdot \sqrt{2} \\ &=& \sqrt{2}+1 \end{eqnarray*}

And hence our answer is $\lfloor 100x \rfloor =  \lfloor 100(1 + \sqrt {2}) \rfloor = \boxed{241}$

Solution 2

\begin{eqnarray*} x &=& \frac {\sum_{n = 1}^{44} \cos n^\circ}{\sum_{n = 1}^{44} \sin n^\circ} = \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\\ &=& \frac {\cos (45 - 1) + \cos(45 - 2) + \dots + \cos(45 - 44)}{\sin 1 + \sin 2 + \dots + \sin 44} \end{eqnarray*}

Using the identity $\sin a + \sin b = 2\sin \frac{a+b}2 \cos \frac{a-b}{2}$ $\Longrightarrow \sin x + \cos x$ $= \sin x + \sin (90-x)$ $= 2 \sin 45 \cos (45-x)$ $= \sqrt{2} \cos (45-x)$, that summation reduces to

\begin{eqnarray*}x &=& \left(\frac {1}{\sqrt {2}}\right)\left(\frac {(\cos 1 + \cos2 + \dots + \cos44) + (\sin1 + \sin2 + \dots + \sin44)}{\sin1 + \sin2 + \dots + \sin44}\right)\\ &=& \left(\frac {1}{\sqrt {2}}\right)\left(1 + \frac {\cos 1 + \cos 2 + \dots + \cos 44}{\sin 1 + \sin 2 + \dots + \sin 44}\right) \end{eqnarray*}

This fraction is equivalent to $x$. Therefore, \begin{eqnarray*} x &=& \left(\frac {1}{\sqrt {2}}\right)\left(1 + x\right)\\ \frac {1}{\sqrt {2}} &=& x\left(\frac {\sqrt {2} - 1}{\sqrt {2}}\right)\\ x &=& \frac {1}{\sqrt {2} - 1} = 1 + \sqrt {2}\\ \lfloor 100x \rfloor &=& \lfloor 100(1 + \sqrt {2}) \rfloor = \boxed{241}\\ \end{eqnarray*}

Solution 3

A slight variant of the above solution, note that

\begin{eqnarray*} \sum_{n=1}^{44} \cos n + \sum_{n=1}^{44} \sin n &=& \sum_{n=1}^{44} \sin n + \sin(90-n)\\ &=& \sqrt{2}\sum_{n=1}^{44} \cos(45-n) = \sqrt{2}\sum_{n=1}^{44} \cos n\\ \sum_{n=1}^{44} \sin n &=& (\sqrt{2}-1)\sum_{n=1}^{44} \cos n \end{eqnarray*}

This is the ratio we are looking for. $x$ reduces to $\frac{1}{\sqrt{2} - 1} = \sqrt{2} + 1$, and $\lfloor 100(\sqrt{2} + 1)\rfloor = \boxed{241}$.

Solution 4

Consider the sum $\sum_{n = 1}^{44} \text{cis } n^\circ$. The fraction is given by the real part divided by the imaginary part.

The sum can be written $- 1 + \sum_{n = 0}^{44} \text{cis } n^\circ = - 1 + \frac {\text{cis } 45^\circ - 1}{\text{cis } 1^\circ - 1}$ (by De Moivre's Theorem with geometric series)

$= - 1 + \frac {\frac {\sqrt {2}}{2} - 1 + \frac {i \sqrt {2}}{2}}{\text{cis } 1^\circ - 1} = - 1 + \frac {\left( \frac {\sqrt {2}}{2} - 1 + \frac {i \sqrt {2}}{2} \right) (\text{cis } ( - 1^\circ) - 1)}{(\cos 1^\circ - 1)^2 + \sin^2 1^\circ}$ (after multiplying by complex conjugate)

$= - 1 + \frac {\left( \frac {\sqrt {2}}{2} - 1 \right) (\cos 1^\circ - 1) + \frac {\sqrt {2}}{2}\sin 1^\circ + i\left( \left(1 - \frac {\sqrt {2}}{2} \right) \sin 1^\circ + \frac {\sqrt {2}}{2} (\cos 1^\circ - 1)\right)}{2(1 - \cos 1^\circ)}$

$= - \frac {1}{2} - \frac {\sqrt {2}}{4} - \frac {i\sqrt {2}}{4} + \frac {\sin 1^\circ \left( \frac {\sqrt {2}}{2} + i\left( 1 - \frac {\sqrt {2}}{2} \right) \right)}{2(1 - \cos 1^\circ)}$

Using the tangent half-angle formula, this becomes $\left( - \frac {1}{2} + \frac {\sqrt {2}}{4}[\cot (1/2^\circ) - 1] \right) + i\left( \frac {1}{2}\cot (1/2^\circ) - \frac {\sqrt {2}}{4}[\cot (1/2^\circ) + 1] \right)$.

Dividing the two parts and multiplying each part by 4, the fraction is $\frac { - 2 + \sqrt {2}[\cot (1/2^\circ) - 1]}{2\cot (1/2^\circ) - \sqrt {2}[\cot (1/2^\circ) + 1]}$.

Although an exact value for $\cot (1/2^\circ)$ in terms of radicals will be difficult, this is easily known: it is really large!

So treat it as though it were $\infty$. The fraction is approximated by $\frac {\sqrt {2}}{2 - \sqrt {2}} = \frac {\sqrt {2}(2 + \sqrt {2})}{2} = 1 + \sqrt {2}\Rightarrow \lfloor 100(1+\sqrt2)\rfloor=\boxed{241}$.

Solution 5

Consider the sum $\sum_{n = 1}^{44} \text{cis } n^\circ$. The fraction is given by the real part divided by the imaginary part.

The sum can be written as $\sum_{n=1}^{22} (\text{cis } n^\circ + \text{cis } 45-n^\circ)$. Consider the rhombus $OABC$ on the complex plane such that $O$ is the origin, $A$ represents $\text{cis } n^\circ$, $B$ represents $\text{cis } n^\circ + \text{cis } 45-n^\circ$ and $C$ represents $\text{cis } n^\circ$. Simple geometry shows that $\angle BOA = 22.5-k^\circ$, so the angle that $\text{cis } n^\circ + \text{cis } 45-n^\circ$ makes with the real axis is simply $22.5^\circ$. So $\sum_{n=1}^{22} (\text{cis } n^\circ + \text{cis } 45-n^\circ)$ is the sum of collinear complex numbers, so the angle the sum makes with the real axis is $22.5^\circ$. So our answer is $\lfloor 100 \cot(22.5^\circ) \rfloor = \boxed{241}$.

Note that the $\cot(22.5^\circ) = \sqrt2 + 1$ can be shown easily through half-angle formula.

See also

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png