GET READY FOR THE AMC 10 WITH AoPS
Learn with outstanding instructors and top-scoring students from around the world in our AMC 10 Problem Series online course.
CHECK SCHEDULE

2018 AMC 10B Problems

Revision as of 16:58, 17 February 2018 by Made in 2016 (talk | contribs) (Added the solution link below each and every problem.)

Problem 1

Kate bakes a 20-inch by 18-inch pan of cornbread. The cornbread is cut into pieces that measure 2 inches by 2 inches. How many pieces of cornbread does the pan contain?

$\textbf{(A) } 90 \qquad \textbf{(B) } 100 \qquad \textbf{(C) } 180 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 360$

Solution

Problem 2

Sam drove 96 miles in 90 minutes. His average speed during the first 30 minutes was 60 mph (miles per hour), and his average speed during the second 30 minutes was 65 mph. What was his average speed, in mph, during the last 30 minutes?

$\textbf{(A) } 64 \qquad \textbf{(B) } 65 \qquad \textbf{(C) } 66 \qquad \textbf{(D) } 67 \qquad \textbf{(E) } 68$

Solution

Problem 3

In the expression $\left(\underline{\qquad}\times\underline{\qquad}\right)+\left(\underline{\qquad}\times\underline{\qquad}\right)$ each blank is to be filled in with one of the digits $1,2,3,$ or $4,$ with each digit being used once. How many different values can be obtained?

$\textbf{(A) }2 \qquad \textbf{(B) }3 \qquad \textbf{(C) }4 \qquad \textbf{(D) }6 \qquad \textbf{(E) }24 \qquad$

Solution

Problem 4

A three-dimensional rectangular box with dimensions $X$, $Y$, and $Z$ has faces whose surface areas are 24, 24, 48, 48, 72, and 72 square units. What is $X+Y+Z$?

$\textbf{(A) }18 \qquad \textbf{(B) }22 \qquad \textbf{(C) }24 \qquad \textbf{(D) }30 \qquad \textbf{(E) }36 \qquad$

Solution

Problem 5

How many subsets of $\{2,3,4,5,6,7,8,9\}$ contain at least one prime number?

$\textbf{(A) }128 \qquad \textbf{(B) }192 \qquad \textbf{(C) }224 \qquad \textbf{(D) }240 \qquad \textbf{(E) }256 \qquad$

Solution

Problem 6

A box contains 5 chips, numbered 1, 2, 3, 4, and 5. Chips are drawn randomly one at a time without replacement until the sum of the values drawn exceeds 4. What is the probability that 3 draws are required?

$\textbf{(A) }\frac{1}{15} \qquad \textbf{(B) }\frac{1}{10} \qquad \textbf{(C) }\frac{1}{6} \qquad \textbf{(D) }\frac{1}{5} \qquad \textbf{(E) }\frac{1}{4} \qquad$

Solution

Problem 7

In the figure below, $N$ congruent semicircles are drawn along a diameter of a large semicircle, with their diameters covering the diameter of the large semicircle with no overlap. Let $A$ be the combined area of the small semicircles and $B$ be the area of the region inside the large semicircle but outside the small semicircles. The ratio $A:B$ is 1:18. What is $N$?


[asy] draw((0,0)--(18,0)); draw(arc((9,0),9,0,180)); filldraw(arc((1,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((3,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((5,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((7,0),1,0,180)--cycle,gray(0.8)); label("...",(9,0.5)); filldraw(arc((11,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((13,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((15,0),1,0,180)--cycle,gray(0.8)); filldraw(arc((17,0),1,0,180)--cycle,gray(0.8)); [/asy]

$\textbf{(A) }16 \qquad \textbf{(B) }17 \qquad \textbf{(C) }18 \qquad \textbf{(D) }19 \qquad \textbf{(E) }36 \qquad$

Solution

Problem 8

Sara makes a staircase out of toothpicks as shown:

[asy] size(150); defaultpen(linewidth(0.8)); path h = ellipse((0.5,0),0.45,0.015), v = ellipse((0,0.5),0.015,0.45); for(int i=0;i<=2;i=i+1) { for(int j=0;j<=3-i;j=j+1) { filldraw(shift((i,j))*h,black); filldraw(shift((j,i))*v,black); } } [/asy]

This is a 3-step staircase and uses 18 toothpicks. How many steps would be in a staircase that used 180 toothpicks?

$\textbf{(A) }10 \qquad \textbf{(B) }11 \qquad \textbf{(C) }12 \qquad \textbf{(D) }24 \qquad \textbf{(E) }30 \qquad$

Solution

Problem 9

The faces of each of 7 standard dice are labeled with the integers from 1 to 6. Let $p$ be the probability that when all 7 dice are rolled, the sum of the numbers on the top faces is 10. What other sum occurs with the same probability $p$?

$\textbf{(A) }13 \qquad \textbf{(B) }26 \qquad \textbf{(C) }32 \qquad \textbf{(D) }39 \qquad \textbf{(E) }42 \qquad$

Solution

Problem 10

In the rectangular parallelepiped shown, $AB=3$, $BC=1$, and $CG=2$. Point $M$ is the midpoint of $\overline{FG}$. What is the volume of the rectangular pyramid with base $BCHE$ and apex $M$?

[asy] size(250); defaultpen(fontsize(10pt)); pair A =origin; pair B = (4.75,0); pair E1=(0,3); pair F = (4.75,3); pair G = (5.95,4.2); pair C = (5.95,1.2); pair D = (1.2,1.2); pair H= (1.2,4.2); pair M = ((4.75+5.95)/2,3.6); draw(E1--M--H--E1--A--B--E1--F--B--M--C--G--H); draw(B--C); draw(F--G); draw(A--D--H--C--D,dashed); label("$A$",A,SW); label("$B$",B,SE); label("$C$",C,E); label("$D$",D,W); label("$E$",E1,W); label("$F$",F,SW); label("$G$",G,NE); label("$H$",H,NW); label("$M$",M,N); dot(A); dot(B); dot(E1); dot(F); dot(G); dot(C); dot(D); dot(H); dot(M); label("3",A/2+B/2,S); label("2",C/2+G/2,E); label("1",C/2+B/2,SE); [/asy]

$\textbf{(A) }1 \qquad \textbf{(B) }\frac{4}{3} \qquad \textbf{(C) }\frac{3}{2} \qquad \textbf{(D) }\frac{5}{3} \qquad \textbf{(E) }2 \qquad$

Solution

Problem 11

Which of the following expressions is never a prime number when $p$ is a prime number?

$\textbf{(A) }p^2+16 \qquad \textbf{(B) }p^2+24 \qquad \textbf{(C) }p^2+26 \qquad \textbf{(D) }p^2+46 \qquad \textbf{(E) }p^2+96 \qquad$

Solution

Problem 12

Line segment $\overline{AB}$ is a diameter of a circle with $AB=24$. Point $C$, not equal to $A$ or $B$, lies on the circle. As point $C$ moves around the circle, the centroid (center of mass) of $\triangle{ABC}$ traces out a closed curve missing two points. To the nearest positive integer, what is the area of the region bounded by this curve?

$\textbf{(A) }25 \qquad \textbf{(B) }38 \qquad \textbf{(C) }50 \qquad \textbf{(D) }63 \qquad \textbf{(E) }75 \qquad$

Solution

Problem 13

How many of the first $2018$ numbers in the sequence $101, 1001, 10001, 100001, \dots$ are divisible by $101$?

$\textbf{(A) }253 \qquad \textbf{(B) }504 \qquad \textbf{(C) }505 \qquad \textbf{(D) }506 \qquad \textbf{(E) }1009 \qquad$

Solution

Problem 14

A list of $2018$ positive integers has a unique mode, which occurs exactly $10$ times. What is the least number of distinct values that can occur in the list?

$\textbf{(A) }202 \qquad \textbf{(B) }223 \qquad \textbf{(C) }224 \qquad \textbf{(D) }225 \qquad \textbf{(E) }234 \qquad$

Solution

Problem 15

A closed box with a square base is to be wrapped with a square sheet of wrapping paper. The box is centered on the wrapping paper with the vertices of the base lying on the midlines of the square sheet of paper, as shown in the figure on the left. The four corners of the wrapping paper are to be folded up over the sides and brought together to meet at the center of the top of the box, point $A$ in the figure on the right. The box has base length $w$ and height $h$. What is the area of the sheet of wrapping paper?

[asy] size(270pt); defaultpen(fontsize(10pt)); filldraw(((3,3)--(-3,3)--(-3,-3)--(3,-3)--cycle),lightgrey); dot((-3,3)); label("$A$",(-3,3),NW); draw((1,3)--(-3,-1),dashed+linewidth(.5)); draw((-1,3)--(3,-1),dashed+linewidth(.5)); draw((-1,-3)--(3,1),dashed+linewidth(.5)); draw((1,-3)--(-3,1),dashed+linewidth(.5)); draw((0,2)--(2,0)--(0,-2)--(-2,0)--cycle,linewidth(.5)); draw((0,3)--(0,-3),linetype("2.5 2.5")+linewidth(.5)); draw((3,0)--(-3,0),linetype("2.5 2.5")+linewidth(.5)); label('$w$',(-1,-1),SW); label('$w$',(1,-1),SE); draw((4.5,0)--(6.5,2)--(8.5,0)--(6.5,-2)--cycle); draw((4.5,0)--(8.5,0)); draw((6.5,2)--(6.5,-2)); label("$A$",(6.5,0),NW); dot((6.5,0)); [/asy]

$\textbf{(A) } 2(w+h)^2 \qquad \textbf{(B) } \frac{(w+h)^2}2 \qquad \textbf{(C) } 2w^2+4wh \qquad \textbf{(D) } 2w^2 \qquad \textbf{(E) } w^2h$

Solution

Problem 16

Let $a_1,a_2,\dots,a_{2018}$ be a strictly increasing sequence of positive integers such that \[a_1+a_2+\cdots+a_{2018}=2018^{2018}.\] What is the remainder when $a_1^3+a_2^3+\cdots+a_{2018}^3$ is divided by $6$?

$\textbf{(A) }0 \qquad \textbf{(B) }1 \qquad \textbf{(C) }2 \qquad \textbf{(D) }3 \qquad \textbf{(E) }4 \qquad$

Solution

Problem 17

In rectangle $PQRS$, $PQ=8$ and $QR=6$. Points $A$ and $B$ lie on $\overline{PQ}$, points $C$ and $D$ lie on $\overline{QR}$, points $E$ and $F$ lie on $\overline{RS}$, and points $G$ and $H$ lie on $\overline{SP}$ so that $AP=BQ<4$ and the convex octagon $ABCDEFGH$ is equilateral. The length of a side of this octagon can be expressed in the form $k+m\sqrt{n}$, where $k$, $m$, and $n$ are integers and $n$ is not divisible by the square of any prime. What is $k+m+n$?

$\textbf{(A) }1 \qquad \textbf{(B) }7 \qquad \textbf{(C) }21 \qquad \textbf{(D) }92 \qquad \textbf{(E) }106 \qquad$

Solution

Problem 18

Three young brother-sister pairs from different families need to take a trip in a van. These six children will occupy the second and third rows in the van, each of which has three seats. To avoid disruptions, siblings may not sit right next to each other in the same row, and no child may sit directly in front of his or her sibling. How many seating arrangements are possible for this trip?

$\textbf{(A) }60 \qquad \textbf{(B) }72 \qquad \textbf{(C) }92 \qquad \textbf{(D) }96 \qquad \textbf{(E) }160 \qquad$

Solution

Problem 19

Joey and Chloe and their daughter Zoe all have the same birthday. Joey is 1 year older than Chloe, and Zoe is exactly 1 year old today. Today is the first of the 9 birthdays on which Chloe's age will be an integral multiple of Zoe's age. What will be the sum of the two digits of Joey's age the next time his age is a multiple of Zoe's age?

$\textbf{(A) }7 \qquad \textbf{(B) }8 \qquad \textbf{(C) }9 \qquad \textbf{(D) }10 \qquad \textbf{(E) }11 \qquad$

Solution

Problem 20

A function $f$ is defined recursively by $f(1)=f(2)=1$ and \[f(n)=f(n-1)-f(n-2)+n\]for all integers $n \geq 3$. What is $f(2018)$?

$\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}$

Solution

Problem 21

Mary chose an even $4$-digit number $n$. She wrote down all the divisors of $n$ in increasing order from left to right: $1,2,...,\dfrac{n}{2},n$. At some moment Mary wrote $323$ as a divisor of $n$. What is the smallest possible value of the next divisor written to the right of $323$?

$\textbf{(A) }324 \qquad \textbf{(B) }330 \qquad \textbf{(C) }340 \qquad \textbf{(D) }361 \qquad \textbf{(E) }646 \qquad$

Solution

Problem 22

Real numbers $x$ and $y$ are chosen independently and uniformly at random from the interval $[0,1]$. Which of the following numbers is closest to the probability that $x,y,$ and $1$ are the side lengths of an obtuse triangle?

$\textbf{(A) }0.21 \qquad \textbf{(B) }0.25 \qquad \textbf{(C) }0.29 \qquad \textbf{(D) }0.50 \qquad \textbf{(E) }0.79 \qquad$

Solution

Problem 23

How many ordered pairs $(a, b)$ of positive integers satisfy the equation \[a\cdot b + 63 = 20\cdot \text{lcm}(a, b) + 12\cdot\text{gcd}(a,b),\] where $\text{gcd}(a,b)$ denotes the greatest common divisor of $a$ and $b$, and $\text{lcm}(a,b)$ denotes their least common multiple?

$\textbf{(A)} \text{ 0} \qquad \textbf{(B)} \text{ 2} \qquad \textbf{(C)} \text{ 4} \qquad \textbf{(D)} \text{ 6} \qquad \textbf{(E)} \text{ 8}$

Solution

Problem 24

Let $ABCDEF$ be a regular hexagon with side length $1$. Denote $X$, $Y$, and $Z$ the midpoints of sides $\overline {AB}$, $\overline{CD}$, and $\overline{EF}$, respectively. What is the area of the convex hexagon whose interior is the intersection of the interiors of $\triangle ACE$ and $\triangle XYZ$?

$\textbf{(A)} \frac {3}{8}\sqrt{3} \qquad \textbf{(B)} \frac {7}{16}\sqrt{3} \qquad \textbf{(C)} \frac {15}{32}\sqrt{3} \qquad  \textbf{(D)} \frac {1}{2}\sqrt{3} \qquad \textbf{(E)} \frac {9}{16}\sqrt{3} \qquad$

Solution

Problem 25

Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$. How many real numbers $x$ satisfy the equation $x^2 + 10,000\lfloor x \rfloor = 10,000x$?

$\textbf{(A) } 197 \qquad \textbf{(B) } 198 \qquad \textbf{(C) } 199 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 201$

Solution

See also

2018 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
2018 AMC 10A
Followed by
2019 AMC 10A
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png