1995 AIME Problems/Problem 5

Problem

For certain real values of $a, b, c,$ and $d_{},$ the equation $x^4+ax^3+bx^2+cx+d=0$ has four non-real roots. The product of two of these roots is $13+i$ and the sum of the other two roots is $3+4i,$ where $i=\sqrt{-1}.$ Find $b.$

Solution

Since the coefficients of the polynomial are real, it follows that the non-real roots must come in complex conjugate pairs. Let the first two roots be $m,n$. Since $m+n$ is not real, $m,n$ are not conjugates, so the other pair of roots must be the conjugates of $m,n$. Let $m'$ be the conjugate of $m$, and $n'$ be the conjugate of $n$. Then, \[m\cdot n = 13 + i,m' + n' = 3 + 4i\Longrightarrow m'\cdot n' = 13 - i,m + n = 3 - 4i.\] By Vieta's formulas, we have that $b = mm' + nn' + mn' + nm' + mn + m'n' = (m + n)(m' + n') + mn + m'n' = \boxed{051}$.

See also

1995 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 4
Followed by
Problem 6
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png