2024 AMC 10A Problems

Revision as of 22:30, 9 September 2024 by Froliop (talk | contribs) (Problem 12)
2024 AMC 10A (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 25-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive 6 points for each correct answer, 2.5 points for each problem left unanswered if the year is before 2006, 1.5 points for each problem left unanswered if the year is after 2006, and 0 points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers (and calculators that are accepted for use on the SAT if before 2006. No problems on the test will require the use of a calculator).
  4. Figures are not necessarily drawn to scale.
  5. You will have 75 minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Problem 1

A bug crawls along a number line, starting at $-2$. It crawls to $-6$, then turns around and crawls to $5$. How many units does the bug crawl altogether?

$\textbf{(A)}\ 9\qquad\textbf{(B)}\ 11\qquad\textbf{(C)}\ 13\qquad\textbf{(D)}\ 14\qquad\textbf{(E)}\ 15$

Problem 2

What is the value of $\dfrac{11!-10!}{9!}$?

$\textbf{(A)}\ 99\qquad\textbf{(B)}\ 100\qquad\textbf{(C)}\ 110\qquad\textbf{(D)}\ 121\qquad\textbf{(E)}\ 132$

Problem 3

When counting from $3$ to $201$, $53$ is the $51^{st}$ number counted. When counting backwards from $201$ to $3$, $53$ is the $n^{th}$ number counted. What is $n$?

$\textbf{(A)}\ 146 \qquad \textbf{(B)}\ 147 \qquad \textbf{(C)}\ 148 \qquad \textbf{(D)}\ 149 \qquad \textbf{(E)}\ 150$

Problem 4

What is $\frac{2+4+6}{1+3+5} - \frac{1+3+5}{2+4+6}?$

$\textbf{(A)}\ -1 \qquad \textbf{(B)}\ \frac{5}{36} \qquad \textbf{(C)}\ \frac{7}{12} \qquad \textbf{(D)}\ \frac{147}{60} \qquad \textbf{(E)}\ \frac{43}{3}$

Problem 5

At the theater children get in for half price. The price for $5$ adult tickets and $4$ child tickets is $$24.50$. How much would $8$ adult tickets and $6$ child tickets cost?

$\textbf{(A) }$35\qquad \textbf{(B) }$38.50\qquad \textbf{(C) }$40\qquad \textbf{(D) }$42\qquad \textbf{(E) }$42.50$

Problem 6

The area of a pizza with radius $4$ is $N$ percent larger than the area of a pizza with radius $3$ inches. What is the integer closest to $N$?

$\textbf{(A) } 25 \qquad\textbf{(B) } 33 \qquad\textbf{(C) } 44\qquad\textbf{(D) } 66 \qquad\textbf{(E) } 78$

Problem 7

A circle has a chord of length $10$, and the distance from the center of the circle to the chord is $5$. What is the area of the circle?

$\textbf{(A) }25\pi \qquad \textbf{(B) }50\pi \qquad \textbf{(C) }75\pi \qquad \textbf{(D) }100\pi \qquad \textbf{(E) }125\pi \qquad$

Problem 8

On an algebra quiz, $10\%$ of the students scored $70$ points, $35\%$ scored $80$ points, $30\%$ scored $90$ points, and the rest scored $100$ points. What is the difference between the mean and median score of the students' scores on this quiz?

$\textbf{(A)}\ 1\qquad\textbf{(B)}\ 2\qquad\textbf{(C)}\ 3\qquad\textbf{(D)}\ 4\qquad\textbf{(E)}\ 5$

Problem 9

In the plane figure shown below, $3$ of the unit squares have been shaded. What is the least number of additional unit squares that must be shaded so that the resulting figure has two lines of symmetry?

[asy] import olympiad; unitsize(25); filldraw((1,3)--(1,4)--(2,4)--(2,3)--cycle, gray(0.7)); filldraw((2,1)--(2,2)--(3,2)--(3,1)--cycle, gray(0.7)); filldraw((4,0)--(5,0)--(5,1)--(4,1)--cycle, gray(0.7)); for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { pair A = (j,i); } } for (int i = 0; i < 5; ++i) { for (int j = 0; j < 6; ++j) { if (j != 5) { draw((j,i)--(j+1,i)); } if (i != 4) { draw((j,i)--(j,i+1)); } } } [/asy]

$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$

Problem 10

The functions $\sin(x)$ and $\cos(x)$ are periodic with least period $2\pi$. What is the least period of the function $\cos(\sin(x))$?

$\textbf{(A)}\ \frac{\pi}{2}\qquad\textbf{(B)}\ \pi\qquad\textbf{(C)}\ 2\pi \qquad\textbf{(D)}\ 4\pi \qquad\textbf{(E)}$ The function is not periodic.

Problem 11

Let $x$ and $y$ be two-digit positive integers with mean $60$. What is the maximum value of the ratio $\frac{x}{y}$?

$\textbf{(A)}\ 3 \qquad \textbf{(B)}\ \frac{33}{7} \qquad \textbf{(C)}\ \frac{39}{7} \qquad \textbf{(D)}\ 9 \qquad \textbf{(E)}\ \frac{99}{10}$

Problem 12

A frog sitting at the point $(1, 2)$ begins a sequence of jumps, where each jump is parallel to one of the coordinate axes and has length $1$, and the direction of each jump (up, down, right, or left) is chosen independently at random. The sequence ends when the frog reaches a side of the square with vertices $(0,0), (0,4), (4,4),$ and $(4,0)$. What is the probability that the sequence of jumps ends on a vertical side of the square?

$\textbf{(A)}\ \frac12\qquad\textbf{(B)}\ \frac 58\qquad\textbf{(C)}\ \frac 23\qquad\textbf{(D)}\ \frac34\qquad\textbf{(E)}\ \frac 78$

Problem 13

Problem 14

Problem 16

Problem 17

Problem 18

Problem 19

Problem 20

Problem 21

Problem 22

Problem 23

Problem 24

Problem 25

Stop trying to cheat!

~ TRX74x94Planet9

See also

2024 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
2023 AMC 10B Problems
Followed by
2024 AMC 10B Problems
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png