2019 AMC 10B Problems/Problem 9

Revision as of 22:04, 14 February 2019 by Intelligence inc (talk | contribs) (Solution)

Problem

The function $f$ is defined by \[f(x) = \lfloor|x|\rfloor - |\lfloor x \rfloor|\]for all real numbers $x$, where $\lfloor r \rfloor$ denotes the greatest integer less than or equal to the real number $r$. What is the range of $f$?

$\textbf{(A) } \{-1, 0\} \qquad\textbf{(B) } \text{The set of nonpositive integers} \qquad\textbf{(C) } \{-1, 0, 1\} \qquad\textbf{(D) } \{0\} \qquad\textbf{(E) } \text{The set of nonnegative integers}$

Solution

There are 4 cases we need to test here:

Case 1: x is a positive integer. WLOG, assume x=1. Then f(1) = 1 - 1 = $0$.

Case 2: x is a positive fraction. WLOG, assume x=0.5. Then f(0.5) = 0 - 0 = $0$.

Case 3: x is a negative integer. WLOG, assume x=-1. Then f(-1) = 1 - 1 = $0$.

Case 4: x is a negative fraction. WLOG, assume x=-0.5. Then f(-0.5) = 0 - 1 = $-1$.

Thus the range of function f is $\textbf{(A) } \{-1, 0\}

iron

See Also

2019 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png