2019 AIME II Problems/Problem 10

Revision as of 16:05, 22 March 2019 by Scrabbler94 (talk | contribs) (add problem)

Problem 10

There is a unique angle $\theta$ between $0^{\circ}$ and $90^{\circ}$ such that for nonnegative integers $n$, the value of $\tan{\left(2^{n}\theta\right)}$ is positive when $n$ is a multiple of $3$, and negative otherwise. The degree measure of $\theta$ is $\frac{p}{q}$, where $p$ and $q$ are relatively prime integers. Find $p+q$.

Solution

See Also

2019 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 9
Followed by
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png