2020 AMC 10A Problems/Problem 21
There exists a unique strictly increasing sequence of nonnegative integers such thatWhat is
Solution 1
First, substitute with . Then, the given equation becomes . Now consider only . This equals . Note that equals , since the sum of a geometric sequence is . Thus, we can see that forms the sum of 17 different powers of 2. Applying the same method to each of , , ... , , we can see that each of the pairs forms the sum of 17 different powers of 2. This gives us . But we must count also the term. Thus, Our answer is .
~seanyoon777
Solution 2
(This is similar to solution 1) Let . Then, . The LHS can be rewritten as . Plugging back in for , we have . When expanded, this will have terms. Therefore, our answer is .
Solution 3
Note that the expression is equal to something slightly lower than . Clearly, answer choices and make no sense because the lowest sum for terms is . just makes no sense. and are 1 apart, but because the expression is odd, it will have to contain , and because is bigger, the answer is .
~Lcz
Video Solution
~IceMatrix
See Also
2020 AMC 10A (Problems • Answer Key • Resources) | ||
Preceded by Problem 20 |
Followed by Problem 22 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2020 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.