1964 AHSME Problems

Revision as of 13:35, 19 February 2020 by Made in 2016 (talk | contribs)
1964 AHSC (Answer Key)
Printable versions: WikiAoPS ResourcesPDF

Instructions

  1. This is a 40-question, multiple choice test. Each question is followed by answers marked A, B, C, D and E. Only one of these is correct.
  2. You will receive ? points for each correct answer, ? points for each problem left unanswered, and ? points for each incorrect answer.
  3. No aids are permitted other than scratch paper, graph paper, ruler, compass, protractor and erasers.
  4. Figures are not necessarily drawn to scale.
  5. You will have ? minutes working time to complete the test.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

Problem 1

What is the value of $[\log_{10}(5\log_{10}100)]^2$?

$\textbf{(A)}\ \log_{10}50 \qquad \textbf{(B)}\ 25\qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ 1$

Solution

Problem 2

The graph of $x^2-4y^2=0$ is:

$\textbf{(A)}\ \text{a parabola} \qquad \textbf{(B)}\ \text{an ellipse} \qquad \textbf{(C)}\ \text{a pair of straight lines}\qquad \\ \textbf{(D)}\ \text{a point}\qquad \textbf{(E)}\ \text{None of these}$

Solution

Problem 3

When a positive integer $x$ is divided by a positive integer $y$, the quotient is $u$ and the remainder is $v$, where $u$ and $v$ are integers. What is the remainder when $x+2uy$ is divided by $y$?

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 2u \qquad \textbf{(C)}\ 3u \qquad \textbf{(D)}\ v \qquad \textbf{(E)}\ 2v$

Solution

Problem 4

The expression

\[\frac{P+Q}{P-Q}-\frac{P-Q}{P+Q}\]

where $P=x+y$ and $Q=x-y$, is equivalent to:

$\textbf{(A)}\ \frac{x^2-y^2}{xy}\qquad \textbf{(B)}\ \frac{x^2-y^2}{2xy}\qquad \textbf{(C)}\ 1 \qquad \textbf{(D)}\ \frac{x^2+y^2}{xy}\qquad \textbf{(E)}\ \frac{x^2+y^2}{2xy}$

Solution

Problem 5

If $y$ varies directly as $x$, and if $y=8$ when $x=4$, the value of $y$ when $x=-8$ is:

$\textbf{(A)}\ -16 \qquad \textbf{(B)}\ -4 \qquad \textbf{(C)}\ -2 \qquad \textbf{(D)}\ 4k, k= \pm1, \pm2, \dots \qquad \\ \textbf{(E)}\ 16k, k=\pm1,\pm2,\dots$

Solution

Problem 6

If $x, 2x+2, 3x+3, \dots$ are in geometric progression, the fourth term is:

$\textbf{(A)}\ -27 \qquad \textbf{(B)}\ -13\frac{1}{2} \qquad \textbf{(C)}\ 12\qquad \textbf{(D)}\ 13\frac{1}{2}\qquad \textbf{(E)}\ 27$

Solution

Problem 7

Let n be the number of real values of $p$ for which the roots of $x^2-px+p=0$ are equal. Then n equals:

$\textbf{(A)}\ 0 \qquad \textbf{(B)}\ 1 \qquad \textbf{(C)}\ 2 \qquad \textbf{(D)}\ \text{a finite number greater than 2}\qquad \textbf{(E)}\ \infty$

Solution

Problem 8

The smaller root of the equation $\left(x-\frac{3}{4}\right)\left(x-\frac{3}{4}\right)+\left(x-\frac{3}{4}\right)\left(x-\frac{1}{2}\right) =0$ is:

$\textbf{(A)}\ -\frac{3}{4}\qquad \textbf{(B)}\ \frac{1}{2}\qquad \textbf{(C)}\ \frac{5}{8}\qquad \textbf{(D)}\ \frac{3}{4}\qquad \textbf{(E)}\ 1$

Solution

Problem 9

A jobber buys an article at $$24$ less $12\frac{1}{2}\%$. He then wishes to sell the article at a gain of $33\frac{1}{3}\%$ of his cost after allowing a $20\%$ discount on his marked price. At what price, in dollars, should the article be marked?

$\textbf{(A)}\ 25.20 \qquad \textbf{(B)}\ 30.00 \qquad \textbf{(C)}\ 33.60 \qquad \textbf{(D)}\ 40.00 \qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 10

Given a square side of length $s$. On a diagonal as base a triangle with three unequal sides is constructed so that its area equals that of the square. The length of the altitude drawn to the base is:

$\textbf{(A)}\ s\sqrt{2} \qquad \textbf{(B)}\ s/\sqrt{2} \qquad \textbf{(C)}\ 2s \qquad \textbf{(D)}\ 2\sqrt{s} \qquad \textbf{(E)}\ 2/\sqrt{s}$

Solution

Problem 11

Given $2^x=8^{y+1}$ and $9^y=3^{x-9}$, find the value of $x+y$

$\textbf{(A)}\ 18 \qquad \textbf{(B)}\ 21 \qquad \textbf{(C)}\ 24 \qquad \textbf{(D)}\ 27 \qquad \textbf{(E)}\ 30$

Solution

Problem 12

Which of the following is the negation of the statement: For all $x$ of a certain set, $x^2>0$?

$\textbf{(A)}\ \text{For all x}, x^2 < 0\qquad \textbf{(B)}\ \text{For all x}, x^2 \le 0\qquad \textbf{(C)}\ \text{For no x}, x^2>0\qquad \\ \textbf{(D)}\ \text{For some x}, x^2>0\qquad \textbf{(E)}\ \text{For some x}, x^2 \le 0$

Solution

Problem 13

A circle is inscribed in a triangle with side lengths $8, 13$, and $17$. Let the segments of the side of length $8$, made by a point of tangency, be $r$ and $s$, with $r<s$. What is the ratio $r:s$?

$\textbf{(A)}\ 1:3 \qquad \textbf{(B)}\ 2:5 \qquad \textbf{(C)}\ 1:2 \qquad \textbf{(D)}\ 2:3 \qquad \textbf{(E)}\ 3:4$

Solution

Problem 14

A farmer bought $749$ sheep. He sold $700$ of them for the price paid for the $749$ sheep. The remaining $49$ sheep were sold at the same price per head as the other $700$. Based on the cost, the percent gain on the entire transaction is:

$\textbf{(A)}\ 6.5 \qquad \textbf{(B)}\ 6.75 \qquad \textbf{(C)}\ 7 \qquad \textbf{(D)}\ 7.5 \qquad \textbf{(E)}\ 8$

Solution

Problem 15

A line through the point $(-a,0)$ cuts from the second quadrant a triangular region with area $T$. The equation of the line is:

$\textbf{(A)}\ 2Tx+a^2y+2aT=0 \qquad \textbf{(B)}\ 2Tx-a^2y+2aT=0 \qquad \textbf{(C)}\ 2Tx+a^2y-2aT=0 \qquad \\ \textbf{(D)}\ 2Tx-a^2y-2aT=0 \qquad \textbf{(E)}\ \text{none of these}$

Solution

Problem 16

Let $f(x)=x^2+3x+2$ and let $S$ be the set of integers $\{0, 1, 2, \dots , 25 \}$. The number of members $s$ of $S$ such that $f(s)$ has remainder zero when divided by $6$ is:

$\textbf{(A)}\ 25\qquad \textbf{(B)}\ 22\qquad \textbf{(C)}\ 21\qquad \textbf{(D)}\ 18 \qquad \textbf{(E)}\ 17$

Solution

Problem 17

Given the distinct points $P(x_1, y_1), Q(x_2, y_2)$ and $R(x_1+x_2, y_1+y_2)$. Line segments are drawn connecting these points to each other and to the origin $O$. Of the three possibilities: (1) parallelogram (2) straight line (3) trapezoid, figure $OPRQ$, depending upon the location of the points $P, Q$, and $R$, can be:

$\textbf{(A)}\ \text{(1) only}\qquad \textbf{(B)}\ \text{(2) only}\qquad \textbf{(C)}\ \text{(3) only}\qquad \textbf{(D)}\ \text{(1) or (2) only}\qquad \textbf{(E)}\ \text{all three}$

Solution

Problem 18

Let $n$ be the number of pairs of values of $b$ and $c$ such that $3x+by+c=0$ and $cx-2y+12=0$ have the same graph. Then $n$ is:

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 2\qquad \textbf{(D)}\ \text{finite but more than 2}\qquad \textbf{(E)}\ \infty$

Solution

Problem 19

If $2x-3y-z=0$ and $x+3y-14z=0, z \neq 0$, the numerical value of $\frac{x^2+3xy}{y^2+z^2}$ is:

$\textbf{(A)}\ 7\qquad \textbf{(B)}\ 2\qquad \textbf{(C)}\ 0\qquad \textbf{(D)}\ -20/17\qquad \textbf{(E)}\ -2$

Solution

Problem 20

The sum of the numerical coefficients of all the terms in the expansion of $(x-2y)^{18}$ is:

$\textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 19\qquad \textbf{(D)}\ -1\qquad \textbf{(E)}\ -19$

Solution

Problem 21

If $\log_{b^2}x+\log_{x^2}b=1, b>0, b \neq 1, x \neq 1$, then $x$ equals:

$\textbf{(A)}\ 1/b^2 \qquad \textbf{(B)}\ 1/b \qquad \textbf{(C)}\ b^2 \qquad \textbf{(D)}\ b \qquad \textbf{(E)}\ \sqrt{b}$

Solution

Problem 22

Given parallelogram $ABCD$ with $E$ the midpoint of diagonal $BD$. Point $E$ is connected to a point $F$ in $DA$ so that $DF=\frac{1}{3}DA$. What is the ratio of the area of $\triangle DFE$ to the area of quadrilateral $ABEF$?

$\textbf{(A)}\ 1:2 \qquad \textbf{(B)}\ 1:3 \qquad \textbf{(C)}\ 1:5 \qquad \textbf{(D)}\ 1:6 \qquad \textbf{(E)}\ 1:7$

Solution

Problem 23

Two numbers are such that their difference, their sum, and their product are to one another as $1:7:24$. The product of the two numbers is:

$\textbf{(A)}\ 6\qquad \textbf{(B)}\ 12\qquad \textbf{(C)}\ 24\qquad \textbf{(D)}\ 48\qquad \textbf{(E)}\ 96$

Solution

Problem 24

Let $y=(x-a)^2+(x-b)^2, a, b$ constants. For what value of $x$ is $y$ a minimum?

$\textbf{(A)}\ \frac{a+b}{2} \qquad \textbf{(B)}\ a+b \qquad \textbf{(C)}\ \sqrt{ab} \qquad \textbf{(D)}\ \sqrt{\frac{a^2+b^2}{2}}\qquad \textbf{(E)}\ \frac{a+b}{2ab}$

Solution

Problem 25

The set of values of $m$ for which $x^2+3xy+x+my-m$ has two factors, with integer coefficients, which are linear in $x$ and $y$, is precisely:

$\textbf{(A)}\ 0, 12, -12\qquad \textbf{(B)}\ 0, 12\qquad \textbf{(C)}\ 12, -12\qquad \textbf{(D)}\ 12\qquad \textbf{(E)}\ 0$

Solution

Problem 26

In a ten-mile race $\textit{First}$ beats $\textit{Second}$ by $2$ miles and $\textit{First}$ beats $\textit{Third}$ by $4$ miles. If the runners maintain constant speeds throughout the race, by how many miles does $\textit{Second}$ beat $\textit{Third}$?

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 2\frac{1}{4}\qquad \textbf{(C)}\ 2\frac{1}{2}\qquad \textbf{(D)}\ 2\frac{3}{4}\qquad \textbf{(E)}\ 3$

Solution

Problem 27

If $x$ is a real number and $|x-4|+|x-3|<a$ where $a>0$, then:

$\textbf{(A)}\ 0<a<.01\qquad \textbf{(B)}\ .01<a<1 \qquad \textbf{(C)}\ 0<a<1\qquad \\ \textbf{(D)}\ 0<a \le 1\qquad \textbf{(E)}\ a>1$

Solution

Problem 28

The sum of $n$ terms of an arithmetic progression is $153$, and the common difference is $2$. If the first term is an integer, and $n>1$, then the number of possible values for $n$ is:

$\textbf{(A)}\ 2\qquad \textbf{(B)}\ 3\qquad \textbf{(C)}\ 4\qquad \textbf{(D)}\ 5\qquad \textbf{(E)}\ 6$

Solution

Problem 29

In this figure $\angle RFS = \angle FDR, FD = 4$ inches, $DR = 6$ inches, $FR = 5$ inches, $FS = 7\tfrac{1}{2}$ inches. The length of $RS$, in inches, is:

[asy] import olympiad; pair F,R,S,D; F=origin;  R=5*dir(aCos(9/16)); S=(7.5,0); D=4*dir(aCos(9/16)+aCos(1/8)); label("$F$",F,SW);label("$R$",R,N); label("$S$",S,SE); label("$D$",D,W); label("$7\frac{1}{2}$",(F+S)/2.5,SE); label("$4$",midpoint(F--D),SW); label("$5$",midpoint(F--R),W); label("$6$",midpoint(D--R),N); draw(F--D--R--F--S--R);  markscalefactor=0.1; draw(anglemark(S,F,R)); draw(anglemark(F,D,R)); //Credit to throwaway1489 for the diagram[/asy]

$\textbf{(A)}\ \text{undetermined} \qquad \textbf{(B)}\ 4\qquad \textbf{(C)}\ 5\tfrac{1}{2} \qquad \textbf{(D)}\ 6\qquad \textbf{(E)}\ 6\tfrac{1}{4}$

Solution

Problem 30

If $(7+4\sqrt{3})x^2+(2+\sqrt{3})x-2=0$, the larger root minus the smaller root is:

$\textbf{(A)}\ -2+3\sqrt{3}\qquad \textbf{(B)}\ 2-\sqrt{3}\qquad \textbf{(C)}\ 6+3\sqrt{3}\qquad \textbf{(D)}\ 6-3\sqrt{3}\qquad \textbf{(E)}\ 3\sqrt{3}+2$

Solution

Problem 31

Let $f(n)=\dfrac{5+3\sqrt{5}}{10}\left(\dfrac{1+\sqrt{5}}{2}\right)^n+\dfrac{5-3\sqrt{5}}{10}\left(\dfrac{1-\sqrt{5}}{2}\right)^n$. Then $f(n+1)-f(n-1)$, expressed in terms of $f(n)$, equals:

$\textbf{(A)}\ \dfrac{1}{2}f(n) \qquad \textbf{(B)}\ f(n)\qquad \textbf{(C)}\ 2f(n)+1 \qquad \textbf{(D)}\ f^2(n)\qquad \textbf{(E)}\ \frac{1}{2}(f^2(n)-1)$

Solution

Problem 32

If $\dfrac{a+b}{b+c}=\dfrac{c+d}{d+a}$, then:

$\textbf{(A)}\ a\text{ must equal }c \qquad \textbf{(B)}\ a+b+c+d\text{ must equal zero }\qquad \textbf{(C)}\ \text{either }a=c\text{ or }a+b+c+d=0,\text{ or both} \qquad \textbf{(D)}\ a+b+c+d\neq 0\text{ if }a=c \qquad \\ \textbf{(E)}\ a(b+c+d)=c(a+b+d)$

Solution

Problem 33

$P$ is a point interior to rectangle $ABCD$ and such that $PA=3$ inches, $PD=4$ inches, and $PC=5$ inches. Then $PB$, in inches, equals:

$\textbf{(A) }2\sqrt{3}\qquad \textbf{(B) }3\sqrt{2}\qquad \textbf{(C) }3\sqrt{3}\qquad \textbf{(D) }4\sqrt{2}\qquad \textbf{(E) }2$

[asy] draw((0,0)--(6.5,0)--(6.5,4.5)--(0,4.5)--cycle); draw((2.5,1.5)--(0,0)); draw((2.5,1.5)--(0,4.5)); draw((2.5,1.5)--(6.5,4.5)); draw((2.5,1.5)--(6.5,0),linetype("8 8")); label("$A$",(0,0),dir(-135)); label("$B$",(6.5,0),dir(-45)); label("$C$",(6.5,4.5),dir(45)); label("$D$",(0,4.5),dir(135)); label("$P$",(2.5,1.5),dir(-90)); label("$3$",(1.25,0.75),dir(120)); label("$4$",(1.25,3),dir(35)); label("$5$",(4.5,3),dir(120)); //Credit to bobthesmartypants for the diagram[/asy]

Solution

Problem 34

If $n$ is a multiple of $4$, the sum $s=1+2i+3i^2+ \ldots +(n+1)i^{n}$, where $i=\sqrt{-1}$, equals:

$\textbf{(A)}\ 1+i\qquad \textbf{(B)}\ \frac{1}{2}(n+2) \qquad \textbf{(C)}\ \frac{1}{2}(n+2-ni) \qquad \\ \textbf{(D)}\ \frac{1}{2}[(n+1)(1-i)+2]\qquad \textbf{(E)}\ \frac{1}{8}(n^2+8-4ni)$

Solution

Problem 35

The sides of a triangle are of lengths $13, 14,$ and $15$. The altitudes of the triangle meet at point $H$. If $AD$ is the altitude to the side length $14$, what is the ratio $HD:HA$?

Solution

Problem 36

In this figure the radius of the circle is equal to the altitude of the equilateral triangle $ABC$. The circle is made to roll along the side $AB$, remaining tangent to it at a variable point $T$ and intersecting lines $AC$ and $BC$ in variable points $M$ and $N$, respectively. Let $n$ be the number of degrees in arc $MTN$. Then $n$, for all permissible positions of the circle:

$\textbf{(A) }\text{varies from }30^{\circ}\text{ to }90^{\circ}\quad \textbf{(B) }\text{varies from }30^{\circ}\text{ to }60^{\circ} \\ \textbf{(C) }\text{varies from }60^{\circ}\text{ to }90^{\circ} \quad \textbf{(D) }\text{remains constant at }30^{\circ}\quad \textbf{(E) }\text{remains constant at }60^{\circ}$

[asy] pair A = (0,0), B = (1,0), C = dir(60), T = (2/3,0); pair M = intersectionpoint(A--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2)), N = intersectionpoint(B--C,Circle((2/3,sqrt(3)/2),sqrt(3)/2)); draw((0,0)--(1,0)--dir(60)--cycle); draw(Circle((2/3,sqrt(3)/2),sqrt(3)/2)); label("$A$",A,dir(210)); label("$B$",B,dir(-30)); label("$C$",C,dir(90)); label("$M$",M,dir(190)); label("$N$",N,dir(75)); label("$T$",T,dir(-90)); //Credit to bobthesmartypants for the diagram[/asy]

Solution

Problem 37

Given two positive number $a, b$ such that $a<b$ , let $A.M.$ be their arithmetic mean and let $G.M.$ be their positive geometric mean. Then $A.M.$ minus $G.M.$ is always less than:

$\textbf{(A) }\dfrac{(b+a)^2}{ab}\qquad \textbf{(B) }\dfrac{(b+a)^2}{8b}\qquad \textbf{(C) }\dfrac{(b-a)^2}{ab} \textbf{(D) }\dfrac{(b-a)^2}{8a}\qquad  \textbf{(E) }\dfrac{(b-a)^2}{8b}$

Solution

Problem 38

The sides $PQ$ and $PR$ of $\triangle PQR$ are respectively of lengths $4$ inches, and $7$ inches. The median $PM$ is $3\frac{1}{2}$ inches. Then $QR$, in inches, is:

$\textbf{(A) }6\qquad \textbf{(B) }7\qquad \textbf{(C) }8\qquad \textbf{(D) }9\qquad  \textbf{(E) }10$

Solution

Problem 39

The magnitudes of the sides of $\triangle ABC$ are $a, b$, and $c$, as shown, with $c\le b\le a$. Through interior point $P$ and the vertices $A, B, C$, lines are drawn meeting the opposite sides in $A', B', C'$, respectively. Let $s=AA'+BB'+CC'$. Then, for all positions of point $P$, $s$ is less than:

$\textbf{(A) }2a+b\qquad \textbf{(B) }2a+c\qquad \textbf{(C) }2b+c\qquad \textbf{(D) }a+2b\qquad  \textbf{(E) } a+b+c$


[asy] import math; defaultpen(fontsize(11pt)); pair A = (0,0), B = (1,3), C = (5,0), P = (1.5,1); pair X = extension(B,C,A,P), Y = extension(A,C,B,P), Z = extension(A,B,C,P); draw(A--B--C--cycle); draw(A--X); draw(B--Y); draw(C--Z); dot(P); dot(A); dot(B); dot(C); label("$A$",A,dir(210)); label("$B$",B,dir(90)); label("$C$",C,dir(-30)); label("$A'$",X,dir(-100)); label("$B'$",Y,dir(65)); label("$C'$",Z,dir(20)); label("$P$",P,dir(70)); label("$a$",X,dir(80)); label("$b$",Y,dir(-90)); label("$c$",Z,dir(110)); //Credit to bobthesmartypants for the diagram[/asy]

Solution

Problem 40

A watch loses $2\tfrac{1}{2}$ minutes per day. It is set right at $1$ P.M. on March $15$. Let $n$ be the positive correction, in minutes, to be added to the time shown by the watch at a given time. When the watch shows $9$ A.M. on March $21$, $n$ equals:

$\textbf{(A) }14\frac{14}{23}\qquad \textbf{(B) }14\frac{1}{14}\qquad \textbf{(C) }13\frac{101}{115}\qquad \textbf{(D) }13\frac{83}{115}\qquad \textbf{(E) }13\frac{13}{23}$

Solution


See also

1964 AHSC (ProblemsAnswer KeyResources)
Preceded by
1963 AHSME
Followed by
1965 AHSME
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40
All AHSME Problems and Solutions


The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png