1997 AIME Problems/Problem 14
Revision as of 19:30, 7 March 2007 by Azjps (talk | contribs) (I thought that was De Moivre's Theorem)
Problem
Let and be distinct, randomly chosen roots of the equation . Let be the probability that , where and are relatively prime positive integers. Find .
Solution
By De Moivre's Theorem, we find that
Now, let be the root corresponding to , and let be the root corresponding to . The magnitude of is therefore:
See also
1997 AIME (Problems • Answer Key • Resources) | ||
Preceded by Problem 13 |
Followed by Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
All AIME Problems and Solutions |