2007 Cyprus MO/Lyceum/Problem 4

Revision as of 19:39, 6 May 2007 by I_like_pie (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)

Problem

We define the operation $a*b = \frac{1+a}{1+b^2}$, $\forall a,b \in \real$.

The value of $(2*0)*1$ is

$\mathrm{(A) \ } 2\qquad \mathrm{(B) \ } 1\qquad \mathrm{(C) \ } 0\qquad \mathrm{(D) \ } \frac{1}{2}\qquad \mathrm{(E) \ } \frac{5}{2}$

Solution

$\frac{1+\frac{1+2}{1+0^2}}{1+1^2}=\frac{1+3}{2}=2\Longrightarrow\mathrm{ A}$

See also

2007 Cyprus MO, Lyceum (Problems)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30