# Difference between revisions of "1983 AIME Problems/Problem 5"

## Problem

Suppose that the sum of the squares of two complex numbers $x$ and $y$ is $7$ and the sum of the cubes is $10$. What is the largest real value that $x + y$ can have?

## Solution

### Solution 1

One way to solve this problem seems to be by substitution. $x^2+y^2=(x+y)^2-2xy=7$ and $x^3+y^3=(x+y)(x^2-xy+y^2)=(7-xy)(x+y)=10$

Because we are only left with $x+y$ and $xy$, substitution won't be too bad. Let $w=x+y$ and $z=xy$.

We get $w^2-2z=7$ and $w(7-z)=10$

Because we want the largest possible $w$, let's find an expression for $z$ in terms of $w$. $w^2-7=2z \implies z=\frac{w^2-7}{2}$.

Substituting, $w^3-21w+20=0$. Factored, $(w-1)(w+5)(w-4)=0$ (the Rational Root Theorem may be used here, along with synthetic division)

The largest possible solution is therefore $x+y=w=\boxed{004}$.

### Solution 2

An alternate way to solve this is to let $x=a+bi$ and $y=c+di$.

Because we are looking for a value of $x+y$ that is real, we know that $d=-b$, and thus $y=c-bi$.

Expanding $x^2+y^2=7+0i$ will give two equations, since the real and imaginary parts must match up. $(a+bi)^2+(c-bi)^2=7+0i$ $(a^2+c^2-2b^2)+(2ab-2cb)i=7+0i$

Looking at the imaginary part of that equation, $2ab-2cb=0$, so $a=c$, and $x$ and $y$ are actually complex conjugates.

Looking at the real part of the equation and plugging in $a=c$, $2a^2-2b^2=7$, or $2b^2=2a^2-7$.

Now, evaluating the real part of $(a+bi)^3+(a-bi)^3$, which equals $10$ (ignoring the odd powers of $i$, since they would not result in something in the form of $10+0i$): $a^3+3a(bi)^2+a^3+3a(-bi)^2=10$ $2a^3-6ab^2=10$

Since we know that $2b^2=2a^2-7$, it can be plugged in for $b^2$ in the above equation to yield: $2a^3-3a(2a^2-7)=10$ $-4a^3+21a=10$ $4a^3-21a+10=0$

Since the problem is looking for $x+y=2a$ to be a positive integer, only positive half-integers (and whole-integers) need to be tested. From the Rational Roots theorem, $a=10, a=5, a=\frac{5}{2}$ all fail, but $a=2$ does work. Thus, the real part of both numbers is $2$, and their sum is $\boxed{004}$

## Solution 3

I started by assuming x and y were roots of some polynomial of the form $w^2+bw+c$ So then $b^2-2c=7$ and $3bc-b^3=10$ Substituting $c=\frac{b^2-7}{2}$ we arrive at the polynomial $b^3-21b-20=0$ From rational root theorem we find the roots to be $-4,-1,5$ Since $-b$ is the sum of the roots and is maximized when b is -4, we the answer is -(-4)= $4$