# Difference between revisions of "1995 AIME Problems/Problem 9"

## Problem

Triangle $ABC$ is isosceles, with $AB=AC$ and altitude $AM=11.$ Suppose that there is a point $D$ on $\overline{AM}$ with $AD=10$ and $\angle BDC=3\angle BAC.$ Then the perimeter of $\triangle ABC$ may be written in the form $a+\sqrt{b},$ where $a$ and $b$ are integers. Find $a+b.$

$[asy] import graph; size(5cm); real lsf=0.5; pen dps=linewidth(0.7)+fontsize(10); defaultpen(dps); pen ds=black; real xmin=-1.55,xmax=7.95,ymin=-4.41,ymax=5.3; draw((1,3)--(0,0)); draw((0,0)--(2,0)); draw((2,0)--(1,3)); draw((1,3)--(1,0)); draw((1,0.7)--(0,0)); draw((1,0.7)--(2,0)); label("11",(1,1.63),W); dot((1,3),ds); label("A",(1,3),N); dot((0,0),ds); label("B",(0,0),SW); dot((2,0),ds); label("C",(2,0),SE); dot((1,0),ds); label("M",(1,0),S); dot((1,0.7),ds); label("D",(1,0.7),NE); clip((xmin,ymin)--(xmin,ymax)--(xmax,ymax)--(xmax,ymin)--cycle);[/asy]$

## Solution

Let $x=\angle CAM$, so $3x=\angle CDM$. Then, $\frac{\tan 3x}{\tan x}=\frac{CM/1}{CM/11}=11$. Expanding $\tan 3x$ using the angle sum identity gives $$\tan 3x=\tan(2x+x)=\frac{3\tan x-\tan^2x}{1-3\tan^2x}.$$ Thus, $\frac{3\tan x-\tan^2x}{1-3\tan^2x}=11$. Solving, we get $\tan x= \frac 12$. Hence, $CM=\frac{11}2$ and $AC= \frac{11\sqrt{5}}2$ by the Pythagorean Theorem. The total perimeter is $2(AC + CM) = \sqrt{605}+11$. The answer is thus $a+b=\boxed{616}$.

 1995 AIME (Problems • Answer Key • Resources) Preceded byProblem 8 Followed byProblem 10 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 All AIME Problems and Solutions