1997 AIME Problems/Problem 14

Revision as of 20:30, 7 March 2007 by Azjps (talk | contribs) (I thought that was De Moivre's Theorem)

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

$\displaystyle z^{1997}=1$

By De Moivre's Theorem, we find that

$\displaystyle z=\cos\left(\frac{2\pi k}{1997}\right)+i\sin\left(\frac{2\pi k}{1997}\right)$

Now, let $\displaystyle v$ be the root corresponding to $\displaystyle \theta=\frac{2\pi m}{1997}$, and let $\displaystyle w$ be the root corresponding to $\displaystyle \theta=\frac{2\pi n}{1997}$. The magnitude of $\displaystyle v+w$ is therefore:

See also

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions