1997 AIME Problems/Problem 14

Revision as of 10:42, 8 March 2007 by Ninja glace (talk | contribs) (Solution)

Problem

Let $\displaystyle v$ and $\displaystyle w$ be distinct, randomly chosen roots of the equation $\displaystyle z^{1997}-1=0$. Let $\displaystyle \frac{m}{n}$ be the probability that $\displaystyle\sqrt{2+\sqrt{3}}\le\left|v+w\right|$, where $\displaystyle m$ and $\displaystyle n$ are relatively prime positive integers. Find $\displaystyle m+n$.

Solution

$\displaystyle z^{1997}=1$

By De Moivre's Theorem, we find that

$\displaystyle z=\cos\left(\frac{2\pi k}{1997}\right)+i\sin\left(\frac{2\pi k}{1997}\right)$

Now, let $\displaystyle v$ be the root corresponding to $\displaystyle \theta=\frac{2\pi m}{1997}$, and let $\displaystyle w$ be the root corresponding to $\displaystyle \theta=\frac{2\pi n}{1997}$. The magnitude of $\displaystyle v+w$ is therefore:

$\sqrt{\left(\cos\left(\frac{2\pi m}{1997}\right) + \cos\left(\frac{2\pi n}{1997}\right)\right)^2 + \left(\sin\left(\frac{2\pi m}{1997}\right) + \sin\left(\frac{2\pi n}{1997}\right)\right)^2}$
$=\sqrt{2 + 2\cos\left(\frac{2\pi m}{1997}\right)\cos\left(\frac{2\pi n}{1997}\right) + 2\sin\left(\frac{2\pi m}{1997}\right)\sin\left(\frac{2\pi n}{1997}\right)}$

We need $\cos (\frac{2\pi m}{1997})\cos (\frac{2\pi n}{1997}) + \sin (\frac{2\pi m}{1997})\sin (\frac{2\pi n}{1997}) \ge \frac{\sqrt{3}}{2}$. The cosine difference identity simplifies that to $\cos\left(\frac{2\pi m}{1997} - \frac{2\pi n}{1997}\right) \ge \frac{\sqrt{3}}{2}$. Thus, $|m - n| \le \frac{\pi}{6} \cdot 2 \cdot \frac{1997}{2 \pi} = \frac{1997}{6}=166$.

Therefore, $\displaystyle m$ and $\displaystyle n$ cannot be more than $\displaystyle 166$ away from each other. This means that for a given value of $\displaystyle m$, there are $\displastyle 332$ (Error compiling LaTeX. Unknown error_msg) values for $\displaystyle n$ that satisfy the inequality: $\displastyle 166$ (Error compiling LaTeX. Unknown error_msg) of them are greater than $\displastyle m$ (Error compiling LaTeX. Unknown error_msg), and $\displaystyle 166$ are less than $\displaystyle m$. Since $\displastyle m$ (Error compiling LaTeX. Unknown error_msg) and $\displaystyle n$ must be distinct, $\displaystyle n$ can have $\displastyle 1996$ (Error compiling LaTeX. Unknown error_msg) possible values. Therefore, the probability is $\displaystyle\frac{332}{1996}=\frac{83}{499}$. The answer is then $\displaystyle 499+83=582$

See also

1997 AIME (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions