# 2007 iTest Problems/Problem 56

The following problem is from the Ultimate Question of the 2007 iTest, where solving this problem required the answer of a previous problem. When the problem is rewritten, the T-value is substituted.

## Problem

In the binary expansion of $\dfrac{2^{2007}-1}{2^{225}-1}$, how many of the first $10,000$ digits to the right of the radix point are $0$'s?

## Solution

We can approach this problem by using long division in base 2 because long division takes advantage of regrouping. The number $2^{2007} - 1$ has $2007$ ones while the number $2^{225} - 1$ has $225$ ones.


[225 ones])[2007 ones]


Notice that $2^{2007} - 1$ only has ones, and notice that $\frac{2^n \cdot (2^{225} - 1)}{2^{225} - 1} = 2^n.$ That means the remainder when $2^{2007} - 1$ is divided by $2^{225} - 1$ is the same when $2^{207} - 1$ is divided by $2^{225} - 1.$


[225 1’s])[207 1’s]


There are not enough digits for $2^{207} - 1$ to divide evenly into $2^{225} - 1,$ so we need to bring down more zeroes. Since $2^{225} - 2^{18} < 2^{225} - 1 < 2^{226} - 2^{19}$, we need to bring down 19 zeroes, resulting in 18 zeroes to the right of the radix point.

                    0.[18 0’s]
[225 1’s])[207 1’s][18 0’s]0


Now we can subtract $2^{225} - 1$ in the long division.

                    0.[18 0’s]1
[225 1’s])[207 1’s][18 0’s]0
-[206 1’s][18 1’s]1
[206 1’s][18 0’s]1


We can bring down more zeroes and repeat the iteration.

                    0.[18 0’s]111
[225 1’s])[207 1’s][18 0’s]0
-[206 1’s][18 1’s]1
[206 1’s][18 0’s]10
-[205 1’s][18 1’s]11
[205 1’s][18 0’s]110
-[204 1’s][18 1’s]111
[204 1’s][18 0’s]111


Notice that no zeroes are placed to the right of the last values after each iteration. Also, there is a pattern after doing the subtraction in each iteration, where there are $n$ ones followed by $18$ zeroes and $207-n$ ones.

To confirm this, we note that in each iteration, we multiply by $2$ and subtract $2^{2007} - 1.$ Doing this results in

  [n   1’s][18 0’s][207-n 1’s]0
-[n-1 1’s][18 1’s][207-n 1’s]1
[n-1 1’s][18 0’s][207-(n-1) 1’s]


Thus, we see that the pattern holds. In fact, tthe pattern repeats $206$ times, and after that, the number from the subtraction just has $207$ zeroes. That means the digits repeats every $225$ digits, and $18$ of these digits are zeroes.

That means of the $9900$ digits past the radix point, $792$ of them are zeroes. After $9918$ digits, there are $810$ zeroes, and since the $82$ digits after are ones, we confirm that there are $\boxed{810}$ zeroes of the first $10,000$ digits past the radix point.

Alternate solutions are always welcome. If you have a different, elegant solution to this problem, please add it to this page.

## See Also

 2007 iTest (Problems) Preceded by:Problem 55 Followed by:Problem 57 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 • 26 • 27 • 28 • 29 • 30 • 31 • 32 • 33 • 34 • 35 • 36 • 37 • 38 • 39 • 40 • 41 • 42 • 43 • 44 • 45 • 46 • 47 • 48 • 49 • 50 • 51 • 52 • 53 • 54 • 55 • 56 • 57 • 58 • 59 • 60 • TB1 • TB2 • TB3 • TB4
Invalid username
Login to AoPS