Difference between revisions of "2010 AIME II Problems/Problem 14"

m (See also)
(+ asymptote, etc)
Line 1: Line 1:
== Problem 14 ==
+
== Problem ==
Triangle <math>ABC</math> with right angle at <math>C</math>, <math>\angle BAC < 45^\circ</math> and <math>AB = 4</math>. Point <math>P</math> on <math>\overbar{AB}</math> is chosen such that <math>\angle APC = 2\angle ACP</math> and <math>CP = 1</math>. The ratio <math>\frac{AP}{BP}</math> can be represented in the form <math>p + q\sqrt{r}</math>, where <math>p</math>, <math>q</math>, <math>r</math> are positive integers and <math>r</math> is not divisible by the square of any prime. Find <math>p+q+r</math>.
+
[[Triangle]] <math>ABC</math> with [[right angle]] at <math>C</math>, <math>\angle BAC < 45^\circ</math> and <math>AB = 4</math>. Point <math>P</math> on <math>\overbar{AB}</math> is chosen such that <math>\angle APC = 2\angle ACP</math> and <math>CP = 1</math>. The ratio <math>\frac{AP}{BP}</math> can be represented in the form <math>p + q\sqrt{r}</math>, where <math>p</math>, <math>q</math>, <math>r</math> are positive integers and <math>r</math> is not divisible by the square of any prime. Find <math>p+q+r</math>.
  
 
== Solution ==
 
== Solution ==
 +
Let <math>O</math> be the [[circumcenter]] of <math>ABC</math> and let the intersection of <math>CP</math> with the [[circumcircle]] be <math>D</math>. It now follows that <math>\angle{DOA} = 2\angle ACP = \angle{APC} = \angle{DPB}</math>. Hence <math>ODP</math> is isosceles and <math>OD = DP = 2</math>.
  
Label the center of the circumcircle of <math>ABC</math> as <math>O</math> and the intersection of <math>CP</math> with the circumcircle as <math>D</math>. It now follows that <math>\angle{DOA} = \angle{APC} = \angle{DPB}</math>. Hence <math>ODP</math> is isosceles and <math>OD = DP = 2</math>.  
+
Denote <math>E</math> the projection of <math>O</math> onto <math>CD</math>. Now <math>CD = CP + DP = 3</math>. By the [[pythagorean theorem]], <math>OE = \sqrt {2^2 - \frac {3^2}{2^2}} = \sqrt {\frac {7}{4}}</math>. Now note that <math>EP = \frac {1}{2}</math>. By the pythagorean theorem, <math>OP = \sqrt {\frac {7}{4} + \frac {1^2}{2^2}} = \sqrt {2}</math>. Hence it now follows that,
  
Denote <math>E</math> the projection of <math>O</math> onto <math>CD</math>. Now <math>CD = CP + DP = 3</math>. By the pythagorean theorem, <math>OE = \sqrt {2^2 - \frac {3^2}{2^2}} = \sqrt {\frac {7}{4}}</math>. Now note that <math>EP = \frac {1}{2}</math>. By the pythagorean theorem, <math>OP = \sqrt {\frac {7}{4} + \frac {1^2}{2^2}} = \sqrt {2}</math>. Hence it now follows that,
+
<cmath>\frac {AP}{BP} = \frac {AO + OP}{BO - OP} = \frac {2 + \sqrt {2}}{2 - \sqrt {2}} = 3 + 2\sqrt {2}</cmath>
  
<math>\frac {AP}{BP} = \frac {AO + OP}{BO - OP} = \frac {2 + \sqrt {2}}{2 - \sqrt {2}} = 3 + 2\sqrt {2}</math>
+
This gives that the answer is <math>\boxed{007}</math>.
  
This gives that the answer is <math>\boxed{007}</math>.
+
<center><asy>  /* geogebra conversion, see azjps userscripts.org/scripts/show/72997 */
 +
import graph; defaultpen(linewidth(0.7)+fontsize(10)); size(250); real lsf = 0.5; /* changes label-to-point distance */
 +
pen xdxdff = rgb(0.49,0.49,1); pen qqwuqq = rgb(0,0.39,0); pen fftttt = rgb(1,0.2,0.2);
 +
 
 +
  /* segments and figures */
 +
draw((0.2,0.81)--(0.33,0.78)--(0.36,0.9)--(0.23,0.94)--cycle,qqwuqq); draw((0.81,-0.59)--(0.93,-0.54)--(0.89,-0.42)--(0.76,-0.47)--cycle,qqwuqq); draw(circle((2,0),2)); draw((0,0)--(0.23,0.94),linewidth(1.6pt)); draw((0.23,0.94)--(4,0),linewidth(1.6pt)); draw((0,0)--(4,0),linewidth(1.6pt)); draw((0.23,(+0.55-0.94*0.23)/0.35)--(4.67,(+0.55-0.94*4.67)/0.35));
 +
 
 +
  /* points and labels */
 +
label("$1$", (0.26,0.42), SE*lsf); draw((1.29,-1.87)--(2,0)); label("$2$", (2.91,-0.11), SE*lsf); label("$2$", (1.78,-0.82), SE*lsf); pair parametricplot0_cus(real t){
 +
return (0.28*cos(t)+0.23,0.28*sin(t)+0.94);
 +
}
 +
draw(graph(parametricplot0_cus,-1.209429202888189,-0.24334747753738661)--(0.23,0.94)--cycle,fftttt); pair parametricplot1_cus(real t){
 +
return (0.28*cos(t)+0.59,0.28*sin(t)+0);
 +
}
 +
draw(graph(parametricplot1_cus,0.0,1.9321634507016043)--(0.59,0)--cycle,fftttt); label("$\theta$", (0.42,0.77), SE*lsf); label("$2\theta$", (0.88,0.38), SE*lsf); draw((2,0)--(0.76,-0.47)); pair parametricplot2_cus(real t){
 +
return (0.28*cos(t)+2,0.28*sin(t)+0);
 +
}
 +
draw(graph(parametricplot2_cus,-1.9321634507016048,0.0)--(2,0)--cycle,fftttt); label("$2\theta$", (2.18,-0.3), SE*lsf); dot((0,0)); label("$B$", (-0.21,-0.2),NE*lsf); dot((4,0)); label("$A$", (4.03,0.06),NE*lsf); dot((2,0)); label("$O$", (2.04,0.06),NE*lsf); dot((0.59,0)); label("$P$", (0.28,-0.27),NE*lsf); dot((0.23,0.94)); label("$C$", (0.07,1.02),NE*lsf); dot((1.29,-1.87)); label("$D$", (1.03,-2.12),NE*lsf); dot((0.76,-0.47)); label("$E$", (0.56,-0.79),NE*lsf); clip((-0.92,-2.46)--(-0.92,2.26)--(4.67,2.26)--(4.67,-2.46)--cycle);
 +
</asy></center>
  
 
== See also ==
 
== See also ==
 
{{AIME box|year=2010|num-b=14|num-a=15|n=II}}
 
{{AIME box|year=2010|num-b=14|num-a=15|n=II}}
 +
 +
[[Category:Intermediate Geometry Problems]]

Revision as of 12:47, 6 April 2010

Problem

Triangle $ABC$ with right angle at $C$, $\angle BAC < 45^\circ$ and $AB = 4$. Point $P$ on $\overbar{AB}$ (Error compiling LaTeX. ! Undefined control sequence.) is chosen such that $\angle APC = 2\angle ACP$ and $CP = 1$. The ratio $\frac{AP}{BP}$ can be represented in the form $p + q\sqrt{r}$, where $p$, $q$, $r$ are positive integers and $r$ is not divisible by the square of any prime. Find $p+q+r$.

Solution

Let $O$ be the circumcenter of $ABC$ and let the intersection of $CP$ with the circumcircle be $D$. It now follows that $\angle{DOA} = 2\angle ACP = \angle{APC} = \angle{DPB}$. Hence $ODP$ is isosceles and $OD = DP = 2$.

Denote $E$ the projection of $O$ onto $CD$. Now $CD = CP + DP = 3$. By the pythagorean theorem, $OE = \sqrt {2^2 - \frac {3^2}{2^2}} = \sqrt {\frac {7}{4}}$. Now note that $EP = \frac {1}{2}$. By the pythagorean theorem, $OP = \sqrt {\frac {7}{4} + \frac {1^2}{2^2}} = \sqrt {2}$. Hence it now follows that,

\[\frac {AP}{BP} = \frac {AO + OP}{BO - OP} = \frac {2 + \sqrt {2}}{2 - \sqrt {2}} = 3 + 2\sqrt {2}\]

This gives that the answer is $\boxed{007}$.

[asy]   /* geogebra conversion, see azjps userscripts.org/scripts/show/72997 */ import graph; defaultpen(linewidth(0.7)+fontsize(10)); size(250); real lsf = 0.5; /* changes label-to-point distance */ pen xdxdff = rgb(0.49,0.49,1); pen qqwuqq = rgb(0,0.39,0); pen fftttt = rgb(1,0.2,0.2);    /* segments and figures */ draw((0.2,0.81)--(0.33,0.78)--(0.36,0.9)--(0.23,0.94)--cycle,qqwuqq); draw((0.81,-0.59)--(0.93,-0.54)--(0.89,-0.42)--(0.76,-0.47)--cycle,qqwuqq); draw(circle((2,0),2)); draw((0,0)--(0.23,0.94),linewidth(1.6pt)); draw((0.23,0.94)--(4,0),linewidth(1.6pt)); draw((0,0)--(4,0),linewidth(1.6pt)); draw((0.23,(+0.55-0.94*0.23)/0.35)--(4.67,(+0.55-0.94*4.67)/0.35));    /* points and labels */ label("$1$", (0.26,0.42), SE*lsf); draw((1.29,-1.87)--(2,0)); label("$2$", (2.91,-0.11), SE*lsf); label("$2$", (1.78,-0.82), SE*lsf); pair parametricplot0_cus(real t){  return (0.28*cos(t)+0.23,0.28*sin(t)+0.94); } draw(graph(parametricplot0_cus,-1.209429202888189,-0.24334747753738661)--(0.23,0.94)--cycle,fftttt); pair parametricplot1_cus(real t){  return (0.28*cos(t)+0.59,0.28*sin(t)+0); } draw(graph(parametricplot1_cus,0.0,1.9321634507016043)--(0.59,0)--cycle,fftttt); label("$\theta$", (0.42,0.77), SE*lsf); label("$2\theta$", (0.88,0.38), SE*lsf); draw((2,0)--(0.76,-0.47)); pair parametricplot2_cus(real t){  return (0.28*cos(t)+2,0.28*sin(t)+0); } draw(graph(parametricplot2_cus,-1.9321634507016048,0.0)--(2,0)--cycle,fftttt); label("$2\theta$", (2.18,-0.3), SE*lsf); dot((0,0)); label("$B$", (-0.21,-0.2),NE*lsf); dot((4,0)); label("$A$", (4.03,0.06),NE*lsf); dot((2,0)); label("$O$", (2.04,0.06),NE*lsf); dot((0.59,0)); label("$P$", (0.28,-0.27),NE*lsf); dot((0.23,0.94)); label("$C$", (0.07,1.02),NE*lsf); dot((1.29,-1.87)); label("$D$", (1.03,-2.12),NE*lsf); dot((0.76,-0.47)); label("$E$", (0.56,-0.79),NE*lsf); clip((-0.92,-2.46)--(-0.92,2.26)--(4.67,2.26)--(4.67,-2.46)--cycle); [/asy]

See also

2010 AIME II (ProblemsAnswer KeyResources)
Preceded by
Problem 14
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
All AIME Problems and Solutions
Invalid username
Login to AoPS