Difference between revisions of "2010 AMC 12A Problems/Problem 18"

m (Semi-automated contest formatting - script by azjps)
(See also)
Line 44: Line 44:
[[Category:Introductory Combinatorics Problems]]
[[Category:Introductory Combinatorics Problems]]
{{MAA Notice}}

Revision as of 21:48, 3 July 2013


A 16-step path is to go from $(-4,-4)$ to $(4,4)$ with each step increasing either the $x$-coordinate or the $y$-coordinate by 1. How many such paths stay outside or on the boundary of the square $-2 \le x \le 2$, $-2 \le y \le 2$ at each step?

$\textbf{(A)}\ 92 \qquad \textbf{(B)}\ 144 \qquad \textbf{(C)}\ 1568 \qquad \textbf{(D)}\ 1698 \qquad \textbf{(E)}\ 12,800$


Brute Force Solution

The number of ways to reach any point $(x,y)$ on the grid is equal to the number of ways to reach $(x-1,y)$ plus the number of ways to reach $(x,y-1)$. Using this recursion, we can draw the diagram and label each point with the number of ways to reach it and go up until we reach the end. Luckily, the figure is not so big that this is too time-consuming or difficult to do.

For example:

\begin{align*}&(-4,-4) \Rightarrow 1\\ &(-3,-4) \Rightarrow 1\\ &(-2,-4) \Rightarrow 1\\ &(-4,-3) \Rightarrow 1\\ &(-4,-2) \Rightarrow 1\\ &(-3,-3) \Rightarrow 2\\ &(-2,-3) \Rightarrow 3\\ &(-3,-2) \Rightarrow 3\\ &(-2,-2) \Rightarrow 6\end{align*}


We soon reach $(4,4) \Rightarrow 1698\ \boxed{\textbf{(D)}}$

Combinatorial Solution 1

By symmetry we only need to count the paths that go through the second quadrant ($x<0$, $y>0$).

For each of these paths, let $(a,2)$ be the first point when it reaches $y=2$. Clearly $a\in\{-4,-3,-2\}$ and the previous point on such path has to be $(a,1)$.

Fix the value of $a$. There are ${a+9 \choose 5}$ ways how the path can go from $(-4,-4)$ to $(a,1)$, and then there are ${6-a \choose 2}$ ways how the path can go from $(a,2)$ to $(4,4)$.

Hence for $a=-4$ we get ${5 \choose 5}{10 \choose 2}=45$ paths, for $a=-3$ we get ${6 \choose 5}{9 \choose 2}=6\cdot 36=216$ paths, and for $a=-2$ we get ${7 \choose 5}{8 \choose 2}=21\cdot 28=588$ paths. This gives us $45+216+588 = 849$ paths through the second quadrant, hence the total number of paths is $2\cdot 849 = 1698$.

Combinatorial Solution 2

Each path that goes through the second quadrant must pass through exactly one of the points $(-4,4)$, $(-3,3)$, and $(-2,2)$.

There is exactly $1$ path of the first kind, ${8\choose 1}^2=64$ paths of the second kind, and ${8\choose 2}^2=28^2=784$ paths of the third type. The conclusion remains the same.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 17
Followed by
Problem 19
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS