Difference between revisions of "2010 AMC 12A Problems/Problem 19"

(Solution 2)
(Solution)
Line 4: Line 4:
 
<math>\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005</math>
 
<math>\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005</math>
  
== Solution ==
+
===Solution===
===Solution 1===
 
The probability of drawing a white marble from box <math>k</math> is <math>\frac{k}{k+1}</math>. The probability of drawing a red marble from box <math>n</math> is <math>\frac{1}{n+1}</math>.
 
 
 
The probability of drawing a red marble at box <math>n</math> is therefore
 
 
 
<center>
 
<math>\frac{1}{n+1} \left( \prod_{k=1}^{n-1}\frac{k}{k+1} \right) < \frac{1}{2010}</math>
 
 
 
<math>\frac{1}{n+1} \left( \frac{1}{n} \right) < \frac{1}{2010}</math>
 
 
 
<math>(n+1)n > 2010</math>
 
</center>
 
 
 
It is then easy to see that the lowest integer value of <math>n</math> that satisfies the inequality is <math>\boxed{45\ \textbf{(A)}}</math>.
 
 
 
===Solution 2===
 
 
The probability of drawing a white marble from box <math>k</math> is <math>\frac{k}{k + 1}</math>, and the probability of drawing a red marble from box <math>k</math> is <math>\frac{1}{k+1}</math>.
 
The probability of drawing a white marble from box <math>k</math> is <math>\frac{k}{k + 1}</math>, and the probability of drawing a red marble from box <math>k</math> is <math>\frac{1}{k+1}</math>.
  
From this, we find that <cmath>P(n) = (\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac {n - 1}{n}) \cdot \frac{1}{n +1} = P(n) = \frac{(n - 1)!}{(n + 1)!} = \frac{1}{n (n + 1)}.</cmath>
+
To stop after drawing <math>n</math> marbles, we must draw a white marble from boxes <math>1, 2, \ldots, n-1,</math> and draw a red marble from box <math>n.</math> Thus, <cmath>P(n) = (\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac {n - 1}{n}) \cdot \frac{1}{n +1} = P(n) = \frac{(n - 1)!}{(n + 1)!} = \frac{1}{n (n + 1)},</cmath>
  
So, <cmath>\frac{1}{n(n + 1)} < \frac{1}{2010}</cmath> <cmath>n(n+1) > 2010</cmath>
+
so, we must have <math>\frac{1}{n(n + 1)} < \frac{1}{2010}</math> or <math>n(n+1) > 2010.</math>
  
The minimum integer value of <math>n</math> satisfying this equation is <math>\boxed{\textbf{(A)}45}</math>.
+
The minimum integer <math>n</math> satisfying this equation is <math>\boxed{\textbf{(A)}45}</math>.
  
 
== See also ==
 
== See also ==

Revision as of 23:51, 16 February 2014

Problem

Each of 2010 boxes in a line contains a single red marble, and for $1 \le k \le 2010$, the box in the $k\text{th}$ position also contains $k$ white marbles. Isabella begins at the first box and successively draws a single marble at random from each box, in order. She stops when she first draws a red marble. Let $P(n)$ be the probability that Isabella stops after drawing exactly $n$ marbles. What is the smallest value of $n$ for which $P(n) < \frac{1}{2010}$?

$\textbf{(A)}\ 45 \qquad \textbf{(B)}\ 63 \qquad \textbf{(C)}\ 64 \qquad \textbf{(D)}\ 201 \qquad \textbf{(E)}\ 1005$

Solution

The probability of drawing a white marble from box $k$ is $\frac{k}{k + 1}$, and the probability of drawing a red marble from box $k$ is $\frac{1}{k+1}$.

To stop after drawing $n$ marbles, we must draw a white marble from boxes $1, 2, \ldots, n-1,$ and draw a red marble from box $n.$ Thus, \[P(n) = (\frac{1}{2} \cdot \frac{2}{3} \cdot \frac{3}{4} \cdot \dots \cdot \frac {n - 1}{n}) \cdot \frac{1}{n +1} = P(n) = \frac{(n - 1)!}{(n + 1)!} = \frac{1}{n (n + 1)},\]

so, we must have $\frac{1}{n(n + 1)} < \frac{1}{2010}$ or $n(n+1) > 2010.$

The minimum integer $n$ satisfying this equation is $\boxed{\textbf{(A)}45}$.

See also

2010 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png