Difference between revisions of "2018 AMC 10B Problems/Problem 20"
(→Solution 1 (Elegant and Fast)) |
|||
Line 4: | Line 4: | ||
<math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math> | <math>\textbf{(A)} \text{ 2016} \qquad \textbf{(B)} \text{ 2017} \qquad \textbf{(C)} \text{ 2018} \qquad \textbf{(D)} \text{ 2019} \qquad \textbf{(E)} \text{ 2020}</math> | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
==Solution 2 (A Bit Bashy)== | ==Solution 2 (A Bit Bashy)== |
Revision as of 12:14, 24 November 2020
Contents
Problem
A function is defined recursively by and for all integers . What is ?
Solution 2 (A Bit Bashy)
Start out by listing some terms of the sequence.
Notice that whenever is an odd multiple of , and the pattern of numbers that follow will always be , , , , . The largest odd multiple of smaller than is , so we have
Solution 3 (Bashy Pattern Finding)
Writing out the first few values, we get: . Examining, we see that every number where has , , and . The greatest number that's and less is , so we have
Solution 4 (Algebra)
Adding the two equations, we have that Hence, . After plugging in to the equation above and doing some algebra, we have that . Consequently, Adding these equations up, we have that and .
~AopsUser101
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 19 |
Followed by Problem 21 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 17 |
Followed by Problem 19 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.