Difference between revisions of "2018 AMC 10B Problems/Problem 25"
Magentacobra (talk | contribs) (→Solution with Number Theory) |
m (→Solution) |
||
Line 38: | Line 38: | ||
</asy> | </asy> | ||
− | Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. | + | Now notice that when <math>x=\pm 100</math> then graph has a hole at <math>(\pm 100,10,000)</math> which the equation <math>y=x^2</math> passes through and then continues upwards. Thus our set of possible solutions is bounded by <math>(-100,100)</math>. We can see that <math>y=x^2</math> intersects each of the lines once and there are <math>99-(-99)+1=199</math> lines for an answer of <math>\boxed{\text{(C)}~199}</math>. |
== Alternative, Bashy Solution == | == Alternative, Bashy Solution == |
Revision as of 00:50, 19 February 2018
Problem
Let denote the greatest integer less than or equal to . How many real numbers satisfy the equation ?
Solution
This rewrites itself to .
Graphing and we see that the former is a set of line segments with slope from to with a hole at , then to with a hole at etc.
Here is a graph of and for visualization.
Now notice that when then graph has a hole at which the equation passes through and then continues upwards. Thus our set of possible solutions is bounded by . We can see that intersects each of the lines once and there are lines for an answer of .
Alternative, Bashy Solution
Same as the first solution, .
We can write as . Expanding everything, we get a quadratic in in terms of :
We use the quadratic formula to solve for {x}:
Since , we get an inequality which we can then solve. After simplifying a lot, we get that .
Solving over the integers, , and since is an integer, there are solutions. Each value of should correspond to one value of , so we are done.
~ Alex_z_Awesome
Another Solution
Let where is the integer portion of and is the decimal portion. We can then rewrite the problem below:
From here, we get
Solving for a+k...
Because , we know that cannot be less than or equal to nor greater than or equal to . Therefore:
There are 199 elements in this range, so the answer is (MagentaCobra)
edited by math4fun2
See Also
2018 AMC 10B (Problems • Answer Key • Resources) | ||
Preceded by Problem 24 |
Followed by Last Problem | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
2018 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 23 |
Followed by Problem 25 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.