# Difference between revisions of "2018 AMC 10B Problems/Problem 25"

## Problem

Let $\lfloor x \rfloor$ denote the greatest integer less than or equal to $x$. How many real numbers $x$ satisfy the equation $x^2 + 10,000\lfloor x \rfloor = 10,000x$?

$\textbf{(A) } 197 \qquad \textbf{(B) } 198 \qquad \textbf{(C) } 199 \qquad \textbf{(D) } 200 \qquad \textbf{(E) } 201$

## Solution

This rewrites itself to $x^2=10,000\{x\}$.

Graphing $y=10,000\{x\}$ and $y=x^2$ we see that the former is a set of line segments with slope $10,000$ from $0$ to $1$ with a hole at $x=1$, then $1$ to $2$ with a hole at $x=2$ etc.

Here is a graph of $y=x^2$ and $y=16\{x\}$ for visualization.

$[asy] import graph; size(400); xaxis("x",Ticks(Label(fontsize(8pt)),new real[]{-5,-4,-3, -2, -1,0,1 2,3, 4,5})); yaxis("y",Ticks(Label(fontsize(8pt)),new real[]{0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18})); real y(real x) {return x^2;} draw(circle((-4,16), 0.1)); draw(circle((-3,16), 0.1)); draw(circle((-2,16), 0.1)); draw(circle((-1,16), 0.1)); draw(circle((0,16), 0.1)); draw(circle((1,16), 0.1)); draw(circle((2,16), 0.1)); draw(circle((3,16), 0.1)); draw(circle((4,16), 0.1)); draw((-5,0)--(-4,16), black); draw((-4,0)--(-3,16), black); draw((-3,0)--(-2,16), black); draw((-2,0)--(-1,16), black); draw((-1,0)--(-0,16), black); draw((0,0)--(1,16), black); draw((1,0)--(2,16), black); draw((2,0)--(3,16), black); draw((3,0)--(4,16), black); draw(graph(y,-4.2,4.2),green); [/asy]$

Now notice that when $x=\pm 100$ then graph has a hole at $(\pm 100,10,000)$ which the equation $y=x^2$ passes through and then continues upwards. Thus our set of possible solutions is bounded by $(-100,100)$. We can see that $y=x^2$ intersects each of the lines once and there are $99-(-99)+1=199$ lines for an answer of $\boxed{\text{(C)}~199}$.

## Alternative, Bashy Solution

Same as the first solution, $x^2=10,000\{x\}$.

We can write $x$ as $\lfloor x \rfloor+\{x\}$. Expanding everything, we get a quadratic in ${x}$ in terms of $\lfloor x \rfloor$: $\{x\}^2+ (2\lfloor x \rfloor -10,000)\{x\} + \lfloor x \rfloor ^2 = 0$

We use the quadratic formula to solve for {x}: $\{x\} = \frac {-2\lfloor x \rfloor + 10,000 \pm \sqrt{( -2 \lfloor x \rfloor + 10,000^2- 4\lfloor x \rfloor^2 ) }}{2}$

Since $0 \leq \{x\} < 1$, we get an inequality which we can then solve. After simplifying a lot, we get that $\lfloor x \rfloor^2 + 2\lfloor x \rfloor - 9999 < 0$.

Solving over the integers, $-101 < \lfloor x \rfloor < 99$, and since $\lfloor x \rfloor$ is an integer, there are $\boxed{\text{(C)}~199}$ solutions. Each value of$\lfloor x \rfloor$ should correspond to one value of $x$, so we are done.

~ Alex_z_Awesome

## Another Solution

Let $x = a+k$ where $a$ is the integer portion of $x$ and $k$ is the decimal portion. We can then rewrite the problem below:

$(a+k)^2 + 10000a = 10000(a+k)$

From here, we get

$(a+k)^2 + 10000a = 10000a + 10000k$

Solving for a+k...

$(a+k)^2 = 10000k$

$a+k = \pm100\sqrt{k}$

Because $0 <= k < 1$, we know that $a+k$ cannot be less than or equal to $-100$ nor greater than or equal to $100$. Therefore:

$-99 \leq a+k = x \leq 99$

There are 199 elements in this range, so the answer is $\fbox{C 199}$ (MagentaCobra)

edited by math4fun2

## See Also

 2018 AMC 10B (Problems • Answer Key • Resources) Preceded byProblem 24 Followed byLast Problem 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 10 Problems and Solutions
 2018 AMC 12B (Problems • Answer Key • Resources) Preceded byProblem 23 Followed byProblem 25 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 All AMC 12 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions.

Invalid username
Login to AoPS