Difference between revisions of "2019 AMC 8 Problems/Problem 11"

(Solution 1)
(Fixed italics)
Line 1: Line 1:
 
==Problem 11==
 
==Problem 11==
The eighth grade class at Lincoln Middle School has <math>93</math> students. Each student takes a math class or a foreign language class or both. There are <math>70</math> eigth graders taking a math class, and there are <math>54</math> eight graders taking a foreign language class. How many eigth graders take <math>\textit{only}</math> a math class and <math>\textit{not}</math> a foreign language class?
+
The eighth grade class at Lincoln Middle School has <math>93</math> students. Each student takes a math class or a foreign language class or both. There are <math>70</math> eighth graders taking a math class, and there are <math>54</math> eight graders taking a foreign language class. How many eighth graders take ''only'' a math class and ''not'' a foreign language class?
  
 
<math>\textbf{(A) }16\qquad\textbf{(B) }23\qquad\textbf{(C) }31\qquad\textbf{(D) }39\qquad\textbf{(E) }70</math>
 
<math>\textbf{(A) }16\qquad\textbf{(B) }23\qquad\textbf{(C) }31\qquad\textbf{(D) }39\qquad\textbf{(E) }70</math>

Revision as of 13:00, 21 November 2019

Problem 11

The eighth grade class at Lincoln Middle School has $93$ students. Each student takes a math class or a foreign language class or both. There are $70$ eighth graders taking a math class, and there are $54$ eight graders taking a foreign language class. How many eighth graders take only a math class and not a foreign language class?

$\textbf{(A) }16\qquad\textbf{(B) }23\qquad\textbf{(C) }31\qquad\textbf{(D) }39\qquad\textbf{(E) }70$

Solution 1

Let $x$ be the number of students taking both a math and a foreign language class.

By P-I-E, we get $70 + 54 - x$ = $93$.

Solving gives us $x = 31$.

But we want the number of students taking only a math class.

Which is $70 - 31 = 39$.

$\boxed{\textbf{(D)}\ 39}$

~phoenixfire

See Also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 10
Followed by
Problem 12
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS