# 2019 AMC 8 Problems/Problem 15

## Problem 15

On a beach $50$ people are wearing sunglasses and $35$ people are wearing caps. Some people are wearing both sunglasses and caps. If one of the people wearing a cap is selected at random, the probability that this person is also wearing sunglasses is $\frac{2}{5}$. If instead, someone wearing sunglasses is selected at random, what is the probability that this person is also wearing a cap?

$\textbf{(A) }\frac{14}{85}\qquad\textbf{(B) }\frac{7}{25}\qquad\textbf{(C) }\frac{2}{5}\qquad\textbf{(D) }\frac{4}{7}\qquad\textbf{(E) }\frac{7}{10}$

## Solution 1

The number of people wearing caps and sunglasses is $\frac{2}{5}\cdot35=14$. So then, 14 people out of the 50 people wearing sunglasses also have caps.

$\frac{14}{50}=\boxed{\textbf{(B)}\frac{7}{25}}$

## Solution Explained

https://youtu.be/gOZOCFNXMhE ~ The Learning Royal

~ pi_is_3.14

~ MathEx

Another video

-Happytwin

## Video Solution

Solution detailing how to solve the problem: https://www.youtube.com/watch?v=omRgmX7KXOg&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=16

~savannahsolver

## Video Solution (MOST EFFICIENT+ CREATIVE THINKING!!!)

~Education, the Study of Everything

~Hayabusa1