Difference between revisions of "2019 AMC 8 Problems/Problem 6"
m (→Also See) |
(→Also See) |
||
Line 209: | Line 209: | ||
Lines of symmetry go through point <math>P</math>, and there are <math>8</math> directions the lines could go, and there are <math>4</math> dots at each direction.<math>\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}</math>. | Lines of symmetry go through point <math>P</math>, and there are <math>8</math> directions the lines could go, and there are <math>4</math> dots at each direction.<math>\frac{4\times8}{80}=\boxed{\textbf{(C)} \frac{2}{5}}</math>. | ||
− | == | + | ==See also== |
{{AMC8 box|year=2019|num-b=5|num-a=7}} | {{AMC8 box|year=2019|num-b=5|num-a=7}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Revision as of 20:54, 28 October 2020
Problem 6
There are grid points (uniformly spaced) in the square shown in the diagram below, including the points on the edges. Point
is in the center of the square. Given that point
is randomly chosen among the other
points, what is the probability that the line
is a line of symmetry for the square?
Solution 1
Lines of symmetry go through point
, and there are
directions the lines could go, and there are
dots at each direction.
.
See also
2019 AMC 8 (Problems • Answer Key • Resources) | ||
Preceded by Problem 5 |
Followed by Problem 7 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AJHSME/AMC 8 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.