Difference between revisions of "2019 AMC 8 Problems/Problem 9"

m (Solution 2)
 
(8 intermediate revisions by 4 users not shown)
Line 12: Line 12:
 
==Solution 2==
 
==Solution 2==
  
Using the formula for the volume of a cylinder, we get that the volume of Alex's can is <math>3^2\cdot12\cdot\pi</math>, and that the volume of Felicia's can is <math>6^2\cdot6\cdot\pi</math>. Now we divide the volume of Alex's can by the volume of Felicia's can, so we get <math>\frac{1}{2}</math>, which is <math>\boxed{\textbf{(B)}\ 1:2}</math>                
+
Using the formula for the volume of a cylinder, we get that the volume of Alex's can is <math>3^2\cdot12\cdot\pi</math>, and that the volume of Felicia's can is <math>6^2\cdot6\cdot\pi</math>. Now we divide the volume of Alex's can by the volume of Felicia's can, so we get <math>\frac{1}{2}</math>, which is <math>\boxed{\textbf{(B)}\ 1:2}</math>    
<math>\small{lol this is something no one should be able to do.-(Algebruh123)2020}</math>
+
           
 +
lol this is something no one should be able to do.-(Algebruh123)2020
  
 
==Solution 3==
 
==Solution 3==
Line 21: Line 22:
 
-Lcz
 
-Lcz
  
==See Also==
+
== Video Solution ==
 +
https://youtu.be/FDgcLW4frg8?t=2440
 +
 
 +
~ pi_is_3.14
 +
 
 +
== Video Solution ==
 +
 
 +
Solution detailing how to solve the problem: https://www.youtube.com/watch?v=G-gEdWP0S9M&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=10
 +
 
 +
==See also==
 
{{AMC8 box|year=2019|num-b=8|num-a=10}}
 
{{AMC8 box|year=2019|num-b=8|num-a=10}}
  
 
{{MAA Notice}}
 
{{MAA Notice}}

Latest revision as of 13:49, 23 April 2021

Problem 9

Alex and Felicia each have cats as pets. Alex buys cat food in cylindrical cans that are $6$ cm in diameter and $12$ cm high. Felicia buys cat food in cylindrical cans that are $12$ cm in diameter and $6$ cm high. What is the ratio of the volume one of Alex's cans to the volume one of Felicia's cans?

$\textbf{(A) }1:4\qquad\textbf{(B) }1:2\qquad\textbf{(C) }1:1\qquad\textbf{(D) }2:1\qquad\textbf{(E) }4:1$

Solution 1

Using the formula for the volume of a cylinder, we get Alex, $\pi108$, and Felicia, $\pi216$. We can quickly notice that $\pi$ cancels out on both sides, and that Alex's volume is $1/2$ of Felicia's leaving $1/2 = \boxed{1:2}$ as the answer.

~aopsav

Solution 2

Using the formula for the volume of a cylinder, we get that the volume of Alex's can is $3^2\cdot12\cdot\pi$, and that the volume of Felicia's can is $6^2\cdot6\cdot\pi$. Now we divide the volume of Alex's can by the volume of Felicia's can, so we get $\frac{1}{2}$, which is $\boxed{\textbf{(B)}\ 1:2}$

lol this is something no one should be able to do.-(Algebruh123)2020

Solution 3

The ratio of the numbers is $1/2$. Looking closely at the formula $r^2 * h * \pi$, we see that the $r * h * \pi$ will cancel, meaning that the ratio of them will be $\frac{1(2)}{2(2)}$ = $\boxed{\textbf{(B)}\ 1:2}$

-Lcz

Video Solution

https://youtu.be/FDgcLW4frg8?t=2440

~ pi_is_3.14

Video Solution

Solution detailing how to solve the problem: https://www.youtube.com/watch?v=G-gEdWP0S9M&list=PLbhMrFqoXXwmwbk2CWeYOYPRbGtmdPUhL&index=10

See also

2019 AMC 8 (ProblemsAnswer KeyResources)
Preceded by
Problem 8
Followed by
Problem 10
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AJHSME/AMC 8 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS