Difference between revisions of "2021 AMC 12B Problems/Problem 12"

(Video Solution by OmegaLearn (System of equations))
m (Added in the duplicates.)
(8 intermediate revisions by 7 users not shown)
Line 1: Line 1:
 +
{{duplicate|[[2021 AMC 10B Problems#Problem 19|2021 AMC 10B #19]] and [[2021 AMC 12B Problems#Problem 12|2021 AMC 12B #12]]}}
 +
 
==Problem==
 
==Problem==
Suppose that <math>S</math> is a finite set of positive integers. If the greatest integer in <math>S</math> is removed from <math>S</math>, then the average value (arithmetic mean) of the integers remaining is <math>32</math>. If the least integer in <math>S</math> is also removed, then the average value of the integers remaining is <math>35</math>. If the great integer is then returned to the set, the average value of the integers rises to <math>40.</math> The greatest integer in the original set <math>S</math> is <math>72</math> greater than the least integer in <math>S</math>. What is the average value of all the integers in the set <math>S?</math>
+
Suppose that <math>S</math> is a finite set of positive integers. If the greatest integer in <math>S</math> is removed from <math>S</math>, then the average value (arithmetic mean) of the integers remaining is <math>32</math>. If the least integer in <math>S</math> is also removed, then the average value of the integers remaining is <math>35</math>. If the greatest integer is then returned to the set, the average value of the integers rises to <math>40.</math> The greatest integer in the original set <math>S</math> is <math>72</math> greater than the least integer in <math>S</math>. What is the average value of all the integers in the set <math>S?</math>
  
 
<math>\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37</math>
 
<math>\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37</math>
  
==Solution==
+
==Solution 1==
 
Let <math>x</math> be the greatest integer, <math>y</math> be the smallest, <math>z</math> be the sum of the numbers in S excluding <math>x</math> and <math>y</math>, and <math>k</math> be the number of elements in S.
 
Let <math>x</math> be the greatest integer, <math>y</math> be the smallest, <math>z</math> be the sum of the numbers in S excluding <math>x</math> and <math>y</math>, and <math>k</math> be the number of elements in S.
  
Line 27: Line 29:
  
 
This can be easily solved to yield <math>k=10</math>, <math>y=8</math>, <math>S=368</math>.
 
This can be easily solved to yield <math>k=10</math>, <math>y=8</math>, <math>S=368</math>.
 +
 +
<math>\therefore</math> average value of all integers in the set <math>=S/k = 368/10 = 36.8</math>, D)
 +
 +
~ SoySoy4444
 +
 +
==Solution 2==
 +
We should plug in <math>36.2</math> and assume everything is true except the <math>35</math> part. We then calculate that part and end up with <math>35.75</math>. We also see with the formulas we used with the plug in that when you increase by <math>0.2</math> the <math>35.75</math> part decreases by <math>0.25</math>. The answer is then <math>\boxed{(D) 36.8}</math>. You can work backwards because it is multiple choice and you don't have to do critical thinking. ~Lopkiloinm
  
 
== Video Solution by OmegaLearn (System of equations) ==
 
== Video Solution by OmegaLearn (System of equations) ==
Line 32: Line 41:
  
 
~ pi_is_3.14
 
~ pi_is_3.14
 +
 +
==Video Solution by Hawk Math==
 +
https://www.youtube.com/watch?v=p4iCAZRUESs
 +
 +
==Video Solution by TheBeautyofMath==
 +
https://youtu.be/FV9AnyERgJQ?t=676
 +
 +
~IceMatrix
 +
 +
  
 
==See Also==
 
==See Also==
 
{{AMC12 box|year=2021|ab=B|num-b=11|num-a=13}}
 
{{AMC12 box|year=2021|ab=B|num-b=11|num-a=13}}
 +
{{AMC10 box|year=2021|ab=B|num-b=18|num-a=20}}
 
{{MAA Notice}}
 
{{MAA Notice}}

Revision as of 08:54, 2 March 2021

The following problem is from both the 2021 AMC 10B #19 and 2021 AMC 12B #12, so both problems redirect to this page.

Problem

Suppose that $S$ is a finite set of positive integers. If the greatest integer in $S$ is removed from $S$, then the average value (arithmetic mean) of the integers remaining is $32$. If the least integer in $S$ is also removed, then the average value of the integers remaining is $35$. If the greatest integer is then returned to the set, the average value of the integers rises to $40.$ The greatest integer in the original set $S$ is $72$ greater than the least integer in $S$. What is the average value of all the integers in the set $S?$

$\textbf{(A) }36.2 \qquad \textbf{(B) }36.4 \qquad \textbf{(C) }36.6\qquad \textbf{(D) }36.8 \qquad \textbf{(E) }37$

Solution 1

Let $x$ be the greatest integer, $y$ be the smallest, $z$ be the sum of the numbers in S excluding $x$ and $y$, and $k$ be the number of elements in S.

Then, $S=x+y+z$

Firstly, when the greatest integer is removed, $\frac{S-x}{k-1}=32$

When the smallest integer is also removed, $\frac{S-x-y}{k-2}=35$

When the greatest integer is added back, $\frac{S-y}{k-1}=40$

We are given that $x=y+72$


After you substitute $x=y+72$, you have 3 equations with 3 unknowns $S,$, $y$ and $k$.

$S-y-72=32k-32$

$S-2y-72=35k-70$

$S-y=40k-40$

This can be easily solved to yield $k=10$, $y=8$, $S=368$.

$\therefore$ average value of all integers in the set $=S/k = 368/10 = 36.8$, D)

~ SoySoy4444

Solution 2

We should plug in $36.2$ and assume everything is true except the $35$ part. We then calculate that part and end up with $35.75$. We also see with the formulas we used with the plug in that when you increase by $0.2$ the $35.75$ part decreases by $0.25$. The answer is then $\boxed{(D) 36.8}$. You can work backwards because it is multiple choice and you don't have to do critical thinking. ~Lopkiloinm

Video Solution by OmegaLearn (System of equations)

https://youtu.be/dRdT9gzm-Pg

~ pi_is_3.14

Video Solution by Hawk Math

https://www.youtube.com/watch?v=p4iCAZRUESs

Video Solution by TheBeautyofMath

https://youtu.be/FV9AnyERgJQ?t=676

~IceMatrix


See Also

2021 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 11
Followed by
Problem 13
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions
2021 AMC 10B (ProblemsAnswer KeyResources)
Preceded by
Problem 18
Followed by
Problem 20
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

The problems on this page are copyrighted by the Mathematical Association of America's American Mathematics Competitions. AMC logo.png

Invalid username
Login to AoPS